Fine-tuning des LLM

Formation continue — 1 jour



Fine-tuning des LLM

Fine-tuning : ajustement / réglage fin

Idée : Continuer I'entrainement d’'un grand modele de
langage, par exemple pour effectuer une tache spécifique :
- classification de texte,
- spécification de vocabulaire dans un domaine,
- synthese de texte
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En pratique, plusieurs familles de modeles de fondation (avec plusieurs
types de modeles : textes, audio, vision, multimodaux, ...) :
- Llama,
- BERT,
- GPT,
- Qwen,
- DeepSeek,
- BLOOM

Et beaucoup de fine-tuning de ces modéles (https://huggingface.co/models):

ﬂ Hugging Face

Models 1,652,264 g Filter by name



https://huggingface.co/models

Fine-tuning des LLM

Quelques ingrédients nécessaires :

- des données (structurées!),

- des moyens de calculs (local ou distant),

- un modele pré-entraine,

- les outils permettant d’entrainer le modele sur les
donnees (bibliotheque Python, acces haut niveau,

gestion des sessions d’entrainements, ...),

- une meéthode d’entrainement (mise a jour de tous les
parametres, seulement certains, LORA, ...)
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Fine-tuning des LLM

~les données :
- déepend de l'objectif de I'entrainement :

- résumeé de textes : des listes de textes et leurs
résumes,

- classification de sentiments : des phrases et
des scores,

- agent conversationnel : des exemples de
conversations

- jeux de données publics (potentiellement sous licence)
- HuggingFace Datasets

- données propres a votre domaine :
- bases de données bien indexées

Dans tous les cas, les données peuvent étre
totalement ou partiellement générées par des LLMs


https://huggingface.co/docs/hub/en/datasets

Fine-tuning des LLM

choisir I'infrastructure:

- Local : possible selon la / les machines a disposition (carte
graphique / puces Apple Silicon préférables). Le fine-tuning peut ne
pas demander beaucoup de ressources (~quelques heures
d’entrainement sur un PC perso)

- Distant : (source hitps://towardsai.net)
- sur des plateformes proposant des acces distants a des
machines :
- classiques : Google Cloud Platform, Microsoft
Azure, ..
- plus locales : IDRIS, Onyxia, ...
- via une API de fine-tuning (ex : OpenAl)


https://towardsai.net/p/cloud-computing/15-leading-cloud-providers-for-gpu-powered-llm-fine-tuning-and-training

Fine-tuning des LLM

choisir les outils :

- Avec une / plusieurs bibliothéques Python :
- HuggingFace Trainer, et tous ses dérivés (beaucoup de
modéles différents supportés)

- Autres bibliotheques plus spécifiques, mais plus simples
d’acces :
- Llama CookBook,
- Unsloth,
- Via un acces haut niveau (ex : API de fine-tuning OpenAl) :
- Pas/ peu la main sur I'entrainement
- Diffusion des modéeles bloguée par le propriétaire de la
plateforme


https://huggingface.co/docs/transformers/main_classes/trainer
https://github.com/meta-llama/llama-cookbook
https://docs.unsloth.ai/

Fine-tuning des LLM

choisir les outils :

- plateforme d’entrainement (gestion des « runs », gestionnaire
de workflow, analyse des performances du modele entraing)

- guelques exemples (local ou distant) :
- AirFlow, Prefect, MLFlow, MetaFlow, ...



Fine-tuning des LLM

choisir un modele :

- le fine-tuning passe par la modification des paramétres du
modele. Impossible pour les modeles a tendance fermés,
accessibles uniguement via APl — a moins d’avoir acces a une
API pour le fine-tuning

- privilégier les modeles a tendance ouverte

- le choix du modele peut étre conditionné par les outils utilises
pour le fine-tuning.
- ex: Llama CookBook n'accepte que les modeles Llama

- taille du modele : incidence sur le temps d’entrainement
(+de parametres => +long).


https://github.com/meta-llama/llama-cookbook

Fine-tuning des LLM

choisir des méthodes de fine-tuning (complémentaires!):

- Supervised Fine-Tuning,

- LORA,

- PEFT,

- Reinforcement Learning with Human Feedback (RLHF),
- DPO,

- QLORA,

- different selon les cas d’'usages, et sont plus ou moins
complexes a mettre en place
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Exemple | expérimentation : Intégrer des acronymes et leurs
définitions dans un agent conversationnel

0 — Avoir une liste structurée d’acronymes et leurs définitions

1 — Geénérer des conversations (avec un LLM par exemple) sur ces
acronymes

2 — Continuer I'entrainement d’'un agent conversationnel sur ces
donnees
- choisir un modele
- choix de l'infrastructure d’entrainement (local, distant)
- méthode et outils pour le fine-tuning

3 — Tester le modele

4 — Partager, utiliser le modele fine-tuné



Exemple / experimentation : Mémorisation d’acronymes

0 — Avoir une liste structurée d’acronymes et leurs définitions

skos:Concept="http://www.my.com/#institute" uri="http://www.my.com/#kisti"
k _abel>kisti Lab
ko _abel>Korean Institute for Science and Technology Information

uri="http://www.my.com/#korea"

i rdf:resource="http://www.my.com/#research"
n>KISTI is a government-funded research institute designed to maximize the efficiency of science and f{

“acronym": "“FUN", nk skos:Concept="http://www.my.com/#url" value="http://en.kisti.re.kr'
"definition": "Fusion Universelle de la Nourriture" )

"acronym": "PER",
"definition": "Purée et Epice de la Réussite"

skos:Concept="http://www.my.com/#laboratory" uri="http://www.my.com/#BerkeleyLab"
“acronym": “TEC", ke Label-Lawrence Berkeley National Laboratory refl
uri="http://www.my.com/#USA"
uri="http://www.my.com/#AnshuDubey"
rdf:resource="http://www.my.com/#research"
ion>In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “e)
skos:Concept="http://www.my.com/#url" value="http://www.lbl.gov"/>@

"definition": "Techniques Elémentaires et Culinares"

“acronym": “SAL",
"definition": "Savoir-Faire et Aromes de la Légéreté"

skos:Concept="http://www.my.com/#supercomputer" uri="http://www.my.com/#Yellowstone"
uri="http://www.my.com/#USA"
“acronym": "CAMP", jata uri="http://www.my.com/#NCAR"
“definition": "Création Artisanale et Maitrisée de la PAtisserie" I tion>Yellowstone is NCAR's 1.5-petaflops high-performance IBM iDataPlex cluster, which features 72,576 I
skos:Concept="http://www.my.com/#url" value="https://www2.cisl.ucar.edu/resources/yellowstone"




1 — Géneérer des conversations (avec un LLM par exemple)
sur ces acronymes

= gemma3:27b v + - =2z @

Create 10 fictive conversations IN FRENCH between an user and an assistant. Those conversations must contains 1
question and 1 answer. Each question must be an user asking for the definition of the acronym TEC; and each answer
must contain the definition : 'Techniques Elémentaires et Culinares'; or a more verbose definition : Techniques
Elémentaires et Culinares. All the answer must be somehow diverse. Each conversation will be formatted in a json list,
where each element is itself a list of the form : [ { 'role': 'user", 'content': THE QUESTION }, { 'role': 'assistant’, 'content':

THE ANSWER } ] Keep it short. The answer must be the raw json; no fioritures.

“rale": "user",
"content": "Bonjour, pouvez-vous me dire ce gue signifie l'acronyme
TEG: T

"role": "assistant",
"content": "TEC signifie Techniques mentaires et
Culinaire.”




Exemple / experimentation : Mémorisation d’acronymes

2 - Entrainement

Mini-cours sur I’'entrainement et le fonctionnement des

réseaux de neurones
https://www.figma.com/design/bdHDd6JYnM5Dfsoi8InBwP/Untitled?m=auto&t=LQAal7R:



Mini-cours sur I’'entrainement et le fonctionnement des

reseaux de neurones

Résumé du vocabulaire :

- learning-rate : « pas » du gradient, mesure la vitesse
d’apprentissage

- n_epochs : nombre de fois ou le modeéle a « vu » toute les
données d’entrainement

- mini-batch-size (per_device_train_batch_size dans
« transformers »): nombre d’éléments du jeu de données utilisés
dans 1 mise a jour des poids du modele



IRISA

Zoom sur LoRA (Low-Rank Adaptation) :

LoR A adaPTegs - peesondlized model

/ adapter A >

S

I—"—"— / adapter A > Source :

https://huggingface.co/learn/I
Im-course/en/chapter11/4
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Idée : On rajoute des parameétres, que I'on entraine avec les données. Le
nombre de parametres rajoutés est bien plus faible (par ex. 5%) que le
nombre de parametres du modele.

- entrainement plus rapide ; et donne des résultats presque aussi bons,
- sépare le modele de base (lourd) de la partie fine-tuning (légére),
- permet d’utiliser plusieurs fine-tuning différents sur un méme modele.


https://huggingface.co/learn/llm-course/en/chapter11/4
https://huggingface.co/learn/llm-course/en/chapter11/4

IRISA

Pretrained
Weights

xC——— ]

Source:
https://arxiv.org/pdf/21
06.0968

Couche d’un modeéle pré-entrainé :
h=W.x (W : matrice avec d lignes etd
colonnes)

Fine-Tuning « classique » :
h = W’.x (on modifie W en W’ pendant le fine-tuning)

h=W.x+ AW.x (AW =W’ - W)
- AW et W ont la méme taille (d lignes, d colonnes ! — d?
parameétres mis a jours. Sl d = 3072, cela fait : 9 437 184)

Fine-tuning LoRA :
h=W.x + B.Ax

- A et B ont des dimensions plus petites que W

- On choisit A de taille (d, r) et B de taille (r, d).
(Aadlignes etrcolonnes,Barlignesetd
colonnes)
- les coefficients de A et B seront les seuls
modifiés pendant I'entrainement

— Typiquement, on fixe r = 16.

- 2.d.r parametres : (si d = 3072, cela fait : 98 304)
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choisir un
modeéle

l

Llama 3.2-1B
Instruct

- petit modele, donc
rapide a
entrainer

- a tendance ouverte,
possible de le fine-
tuner localement

- I licence de diffusion
restrictive

< Exemple / experimentation : Mémorisation d’acronymes

2 — Continuer I’entrainement d’un agent conversationnel
sur ces données

choisir une outils méthode
infrastructure d’entrainement de fine-tuning
Hugging Face
\ Trainer : 14
v - gestion fine des - LORA : leger et

- local (Mac M3) :
pour expérimenter

- distant (GCP / Onyxia) :
entrainement plus
important (mais
pas nécessaire
ici — facteur x3
temps)

hyper-parametres, modulable

- bien documenté

- prise en main tres
simple

- gratuit + open-source
Metaflow, MLFlow
(gestionnaires de
workflow)



Exemple / experimentation : Mémorisation d’acronymes

3 - Tester le modéle

On veut tester le modele sur sa capacité a mémoriser des définitions.

On pose au modele les questions du jeu de test, et on evalue ensuite la
gualité de ses reponses.

2 exemples pour évaluer la qualité des réponses :

- modéles d’« embeddings » : petits modeles, qui sont
entrainé a prédire le taux de similarité entre deux séquences de mots

- « LLM as a judge » : on demande a un LLM tiers d’évaluer la
qualité des reponses du LLM « fine-tuné ». Par exemple : « Réponds 1
si les deux réponses sont proches, et 0 sinon ».



Exemple / experimentation : Mémorisation d’acronymes

3 - Tester le modéle

Selon les résultats du modeéles, recommencer I'entrainement avec des
parametres différents .. !



Exemple / experimentation : Mémorisation d’acronymes

IRISA

Quelques exemples :

4 - Partager et utiliser le modele

- publier sur Hugging Face Hub
- type d’acces a décider : acces ouvert, acces
restreint
- licence a décider

- partager le modele brut :
- poids : .safetensors (~pkl) ou autres formats
guantisés
- directement les checkpoints de I'entrainement
pour I'experimentation

- dans le cas d'un modele fine-tuné avec la méthode LoRA
on peut se contenter de partager la surcouche (+ légere que
le modele entier)



Exemple / experimentation : Mémorisation d’acronymes

Pour expérimenter :
— code disponible sur github :

https://github.com/mariusgarenaux/fine_tuning_acronym
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