Notes - Introduction a l'intelligence artificielle et aux grands

modéles de langage

Marius Garénaux-Gruau® Corentin Val'- IRISA

Table des matiéres

1

5

Introduction a la notion de modéle d’lA avec un exemple

1.1 Qu'est-ce quunmodele? L L
1.2 Apprentissage Automatique (Machine Learning), entrainement
1.3 Les impacts humains et environnementaux desmodéles
1.4 Facultatif - Zoom sur les réseaux de neurones

Explication du fonctionnement des LLM

2.1 Modeéle de fondation, tokens et machines a camemberts
2.2 Entrailnement des modéles de fondation L.
2.3 Du modéle de fondation a I'agent conversationnel
2.3.1 Ajustementsupervisé e
2.3.2 Ajustementparrenforcemento oL

Comment représenter des tokens avec des nombres ? Les embeddings

3.1 Vecteurs L
3.2 Embedding

Ecosystéme et historique des LLM

4.1 Différencierles LLM Lo
4.2 HistoriquedesLLM
4.2.1 1990-2010 : Approches statistiques etneuronales
4.2.2 2011-2016 : Word Embeddings etavancéesRNN
4.2.3 2017-2019 : Apparition des Transformers
4.2.4 2020-2021 : Montée en puissance et adoption
4.2.5 2022 :Démocratisation et open-source
4.2.6 2023-2024 : Multimodalité et spécialisation
4.3 Acces etdéploiementdesLLM

Bibliographie

ONOOWN

8
9
13
14
15
16

16
17
17

19
19
21
21
22
22
23
24
24
24

25

Ces notes viennent en complément d’une présentation donnée lors d’une formation d’une journée sur les
LLM. Ce document disponible sous la licence CC-BY-NC-SA.

Voici un rapide condensé de resources a consulter; de la plus abordable a la plus approfondie. Elles ont
été utilisées, entre autres, pour rédiger ce document. Vous pouvez les utiliser comme des compléments a

ces notes, pour approfondir certains sujets ou tout simplement voir différents points de vue.

— (2) : Science Etonnante; Vidéo accessible a un large public et compléete sur ChatGPT.

*marius.garenaux-gruau@irisa.fr
Tcorentin.val@irisa.fr

https://creativecommons.org/licenses/by-nc-sa/4.0/

A whimsical and creative image depicting a hybrid creature that is a mix of a watfle and a hippopotamus. This imaginative creature features the distinctive, bulky body of a hippo, but with a texture and
appearance resembling a golden-brown, crispy waffle. The creature might have elements like waffle squares across its skin and a syrup-like sheen. s set in a surreal environment that playfully combines a
natural water habitat of a hippo with clements of a breakfast table sctting, possibly including oversized utensils or plates in the background. The image should evoke a sense of playful absurdity and culinary

fantasy.

Figure 1 — Un exemple d’'image générée a partir d’'un texte par Stable Diffusion (1)

— (3) : Rapport du Sénat sur I'l.A; tres complet, abordable et récent.

— (4) : Andrej Karpathy, présentation abordable et compléte (en Anglais) du fonctionnement des LLM.

— (5) : Formation FIDLE; en live ou rediffusion. Couvre un large éventail de notions, avec les TP cor-
respondants.

— (B) : Panoram’lA : Emission mensuelle de I'IDRIS sur I'actualité en IA

— (7) : Umar Jamil, beaucoup de ressources vidéo, et des exemples de codes sur le fonctionnement
détaillé de nombreux modéles. Niveau relativement avancé, mais vaut le détour.

— (8) : Article de recherche récent couvrant assez largement les LLM.

1 Introduction a la notion de modeéle d’lA avec un exemple

La notion d’'Intelligence Artificielle est de plus en plus présente dans le quotidien de nombreuses personnes.
Des algorithmes génératifs (génération d’image a partir de texte, agents conversationnels, ...) aux systémes
de recommandation (Spotify, Instagram, ...); les exemples sont nombreux et de plus en plus impression-
nants. Afin de prendre les décisions les plus appropriées (comment utiliser - ou ne pas utiliser - ces modéles,
lesquels choisir dans quel cadre, ...), il est nécessaire de bien comprendre les enjeux liés a I'utilisation et
au déploiement de ces outils.

Il est difficile de trouver une définition rigoureuse et précise de I'Intelligence Atrtificielle. Pour cause, on
peut aborder cette notion sous de nombreux aspects : scientifique, économique, culturel, technologique,
juridique,... Trouver une définition englobant tous ces exemples n’est alors pas si simple... On se référe au
trés bon rapport de TOPECST (Office Parlementaire d’Evaluation des Choix Scientifiques et Technologiques)
sur les nouveaux développements de l'intelligence artificielle (3), page 41 (1.B.1); pour une explication plus
détaillée sur ce sujet.

On gardera a 'esprit dans ce document que les modeéles d’Intelligence Artificielle dont on va parler sont
d’abord des programmes informatiques. lls permettent d’automatiser des taches.

1.1 Qu’est-ce qu’un modéle ?

La notion de modéle est centrale. Pour bien la comprendre, on présente dans un premier temps un exemple
simple : le lien entre consommation électrique et température extérieure.

Consommation électrique en Bretagne

On récupére des données de consommation quotidienne (9) et de température moyenne (10) en Bretagne,
depuis 2016. On affiche ensuite un point pour chaque relevé, sa coordonnée sur I'axe horizontal étant
la température du jour, et sa coordonnée sur I'axe vertical étant la consommation totale quotidienne en
Bretagne. Ceci produit un nuage de points illustrant le lien entre consommation électrique et température
(Figure 2).

Consommation électrique quotidienne en fonction de la température
Bretagne du 01-2016 au 05-2024

6000 +

5000 +

4000 PR

3000 +

Consommation électrique (GWh)

2000 +

1000 ~

T T T T
—-2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
Température moyenne (*C)

Figure 2 — Consommation électrique et température en Bretagne depuis 2016

Imaginons désormais que I'on souhaite avoir une idée de la consommation électrique pour toute la Bretagne
demain; en sachant qu’il fera en moyenne 10°C (avec une prédiction météo par exemple). On peut alors
construire un programme informatique qui essaie de faire cette prédiction. Pour cela, nous allons d’abord
modéliser le lien entre température et consommation électrique.

On observe une tendance globale : lorsque la température diminue, la consommation augmente a un
rythme constant. C’est trés probablement lié au chauffage - mais on ne cherche pas spécialement & com-
prendre ce lien ici. Forts de cette observation, on choisit de modéliser le lien entre température et consom-
mation par une droite. Parmi toutes les droites possibles, on choisit celle qui est la plus proche du nuage
de point” (Figure 3).

Selon notre modéle, s’il fait 10°C demain, la consommation moyenne sera d’environ 2800 GWh. On a bien
sar fait beaucoup d’approximations sur le chemin, avant d’arriver a cette valeur; mais on a une idée de
cette consommation. On a posé les bases d’'une démarche scientifique, et on peut commencer a améliorer
certains points pour avoir un “meilleur” modéle :

1. Bien gu’elle semble floue, la notion de “proche du nuage de point” a un sens trés précis ici. Pour un point donné, on peut calculer
sa différence de hauteur avec la droite. Si I'on fait la moyenne de ces différences avec tous les points, on obtient un nombre positif. Dire
que la droite est proche du nuage de points veut dire ici que ce nombre est le plus petit possible. Il existe d’autres maniéres de mesurer
la distance entre la droite et les points, et choisir une maniére de mesurer cette distance est souvent une partie trés importante des
modeles.

Consommation électrique quotidienne en fonction de la température
Bretagne du 01-2016 au 05-2024

6000

5000 +

4000

3000 +

Consommation électrique (GWh)

2000 +

1000 A

T T T T T
-2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
Température moyenne (°C)

Figure 3 — Consommation électrique et température en Bretagne depuis 2016

— on a choisi de modéliser notre probléme avec une droite (un autre modeéle aurait peut-étre mieux
convenu),

— on a choisi une droite parmi toutes celles possibles (peut-étre que la droite qui modélise le mieux
notre phénomene est une autre),

— les données ne sont peut-étre pas toutes bonnes (il y a peut-étre des erreurs de mesure),

— notre modéle prédit tout le temps la méme consommation pour une température donnée, la réalité
est plus complexe; il pourrait étre intéressant de complexifier le modéle pour qu’il colle mieux aux
données (par exemple en rajoutant de I'aléatoire ou d’autres paramétres en entrée, ...)

On retiendra qu’'un modéle est un support théorique qui nous permet de reproduire un phénomeéne, de
mieux le comprendre et éventuellement de I'automatiser via un programme informatique.

Les modéles d'lA fonctionnent pour la plupart en “entrée”“sortie” : on leur donne quelque chose (par
exemple une description textuelle d'image), et ils le transforment en autre chose (une image). Notre mo-
déle, utilisé pour prédire la consommation électrique a partir de la température, ne déroge pas a cette régle.

Le modéle YOLO (11) (Figure 4) prend en entrée une image, et produit en sortie des “boites” annotées :
un chien, un vélo, une voiture. Il modélise le fait de reconnaitre des objets dans une image (capacité plutot
traditionnellement attribuée a des humains).

Le modéle AlphaFold (Figure 5)prédit la structure des protéines en 3 dimensions. Il prend en entrée une
séquence d’acides aminés (en pratique c’est simplement une suite de lettres); et la transforme en des
coordonnées dans I'espace. Ces coordonnées sont celles de la protéine constituée de cette séquence
d’acides aminés. La structure en 3 dimensions de la protéine détermine sa fonction (par exemple (12) :
transporter de 'oxygéne dans le sang).

IA générative
Le terme IA générative revient beaucoup dans le débat public. Un modéle d’lA est dit génératif lorsqu’il pro-

duit du contenu : texte, image, vidéo, audio. On n’essaie pas ici de donner une définition rigoureuse au risque
de s’empétrer dans les sables mouvants de I'approximation. Les LLM, que I'on décrit dans ce document sont

Figure 4 — Un exemple de segmentation d'image avec le modéle YOLO (You Only Look Once) (11)

a

Sequence of AF-Q8W3KO0-F1 & Chain 4 1:Probabledi... 4+ A 3% @

1 11 21 31 41 51 61

MAGELVSFAVNKLWDLLSHEYTLFQGVEDQVAELKSDLNLLKSFLKDADAKKHTSALVRYCVEEIK
71 81 91 101 111 121 131

DIVYDAEDVLETFVQKEKLGTTSGIRKHIKRLTCIVPDRREIALYIGHVSKRITRVIRDMQSFGVQ

141 151 161 171 181 1
OMIVDDYMHPLRNREREIRRTFPKDNESGEFVALEENVKKLVGYFVEEDNYQVVSITGMGGLGKTTL

)
®
RN

Figure 5 — AlphaFold - Probable disease resistance protein At1g58602 (13)

des modéles d’lA générative, mais on peut aussi citer Stable Diffusion (a I'origine de I'hippopotame - Figure
1 du début du document).

Attention cependant a 'acronyme IAG. Il est fortement ambigu car il désigne plutot I'|A Générale. L'lA Géné-
rale fait référence a un modéle (fictif pour le moment) capable d’effectuer “n’importe quelle tdche cognitive
propre aux humains ou autres animaux”?. Si on veut absolument utiliser un acronyme pour désigner les IA

génératives, on pourra - en dernier recours - utiliser : 1Ag.
Et les modéles de langage dans tout ¢a ?

Les modeles de langage, eux, modélisent ... le langage naturel. C’est-a-dire qu’ils comprennent le sens
d’'une phrase, 'importance d’un mot par rapport a un autre; et sont capables de faire des prédictions
concernant ces mots. Par exemple, les Grands modéles de langage sont capables de répondre a une
question ou d’interpréter si une phrase est plutét positive ou négative. Cependant, modéliser le langage
naturel est loin d’étre facile, et on s’en rend compte en constatant le temps qui s’est passé avant I'apparition
de robots conversationnels qui fonctionnent bien (environ 2018 avec GPT-2). Il existait avant cela d’autres
modeles; et tout un champ de recherche (Natural Language Processing). Ces modéles étaient cependant
bien moins impressionnants que les grands modéles de langage de ces derniéres années. La ruse qui a
permis a ces modeéles d’émerger est liée a un changement de point de vue :

Au lieu d’expliciter les regles régissant le langage naturel, on construit des modéles qui sont
capables “d’apprendre” a partir d’exemples de phrases.

En pratique, on parle de modéles de Machine Learning (Apprentissage Automatique / Apprentissage Ma-
chine). On décrit dans la suite comment ce genre de modéles fonctionnent.

1.2 Apprentissage Automatique (Machine Learning), entrainement

Les modéles de Machine Learning sont une sous-famille des modéles d’'lA. Ce sont des modéles auxquels
on va pouvoir apprendre a réaliser des taches (par exemple, apprendre a déterminer si une photo donnée
est une photo de voiture ou non). Souvent, cet apprentissage est effectué en utilisant des données (en
suivant I'exemple, des milliers de photos dont on sait lesquelles contiennent des voitures). Ces données
permettent d’ajuster (on parle d’entrainement) le modéle pour qu’il fonctionne bien.

Dans notre exemple de consommation électrique, la droite est un modéle de Machine Learning! On I'en-
traine avec des données, en choisissant la droite la plus proche du nuage de point. Les paramétres que
I'on ajuste ici sont la hauteur et la pente de la droite. Notre modéle a appris a prédire la consommation
électrique a partir de la température.

Dans le processus d’entrainement d’'un modéle de Machine Learning, une partie importante consiste a
évaluer le modéle. En effet, les paramétres sont choisis pour que le modéle soit le meilleur possible sur
les données d’entrainement. Par exemple, dans le cas de la droite, on minimise la distance moyenne
entre les points et la droite. Si les données sont erronées (erreur de mesure, ...); le modéle va étre entrainé
a prédire ...des informations erronées (et il sera peut-étre trés bon pour prédire ces informations). La qualité
des données est une partie trés importante de ces modéles.

Nombre de parameétres

La ou une droite peut étre définie par 2 nombres (sa hauteur et sa pente), les grands modéles de langage
récents ont bien plus de parameétres (on compte en dizaines de milliards). C’est grace a ces milliards de
parameétres que I'on arrive a modéliser des choses aussi complexes que le langage naturel. C’est de la que
vient I'adjectif “Grand” dans « Grand Modéle de Langage ».

L'essor de I'lA ces derniéres années (depuis 2010) est d0 en partie & des modéles avec un nombre trés
important de paramétres. Cet essor s’explique car ces modéles ont la possibilité de résoudre des taches

2. https://fr.wikipedia.org/wiki/Intelligence_artificielle_g%C3%A9n%C3%A9rale#cite_note-:0-2

https://fr.wikipedia.org/wiki/Intelligence_artificielle_g%C3%A9n%C3%A9rale#cite_note-:0-2

complexes (génération de texte, d'image, reconnaissance d’'image, jouer et gagner a des jeux complexes
comme le go, ...). On parle de Deep Learning (Apprentissage Profond) pour une désigner une catégorie
de modéles (les réseaux de neurones) ayant beaucoup de parameétres.

Les idées d’architecture de ces modeéles sont plus anciennes que 2010, mais la quantité de données
amenée par Internet, ainsi que le déploiement de moyens de calcul plus importants sont les facteurs qui
ont permis I'entrainement et la popularisation de ces modéles. Un des points faible de ces modeles est qu’on
ne comprend pas vraiment comment ils fonctionnent. En revanche, on sait observer qu’ils fonctionnent bien!
L’étude de ces modéles est devenue en partie une science expérimentale.

1.3 Les impacts humains et environnementaux des modéles

Le développement et I'utilisation des grands modéles que I'on vient de décrire ne se fait pas sans impacts.
Des employés exploités pour visualiser des contenus toxiques (14) aux mini-centrales nucléaires produites
a la chaine pour alimenter des centres de données (15), le paysage n’est pas trés beau a voir... Larticle et
la présentation vidéo des JRES (Journées Réseaux de I'Enseignement Supérieur) présentent trés bien le
sujet : (16).

Pour rentrer dans les détails, les modéles d’apprentissage profonds posent de sérieuses questions, et ce
tout au long de leur cycle de vie. De la fabrication des composants électronique a I'utilisation finale des
modéles, en passant par leur entrainement et leur mise a disposition ; chacune de ces étapes apporte son
lot de limitations et de problématiques.

Fabrication des composants et durée de vie du matériel

La production des composants électroniques nécessaires a I'entrainement et a la mise a disposition de ces
modeles nécessite des matiéres premiéres rares (on parle de terres rares). Ces terres rares sont parfois
extraites dans des conditions désastreuses. Le tantale par exemple, utilisé dans les condensateurs; est
principalement produit en République Démocratique du Congo (43% en 2017 (17)). L'article de radio-canada
(18) décrit une mine ou I'extraction se fait manuellement, parfois par des enfants.

Une fois produites, les cartes graphiques ont a priori une durée de vie trés courte (1 a 3 ans selon (19)),
due a un taux d'utilisation trés élevé. Larticle cite un architecte de Google, selon qui il serait possible de
prolonger cette durée - au doux prix de les utiliser moins souvent et donc d’amortir moins vite leur achat.

La question du recyclage des composants n'est pas du tout résolue; alors que les cartes graphiques
contiennent des produits dangereux pour I'environnement (20). Le rapport sur la durabilité de la compagnie
Nvidia (21) (ayant un quasi-monopole sur les cartes graphiques utilisées pour I'entrainement des grands
modeles de langage) reste bizarrement tres timide sur le sujet; malgré leur sublime phrase d’introduction :
“Green isn’t just our corporate color” (20).

Nettoyage et annotation des données

Comme on I'a vu, les modéles d’apprentissage automatique ont besoin de beaucoup de données. La qualité
des données impactant directement la qualité des modéles, les entreprises qui développent ces derniers
ont parfois recours a de méthodes de nettoyage et d’étiquetage des données manuelles. C’est le cas par
exemple de I'entreprise OpenAl (développant ChatGPT) qui, en 2022, a sous-traité des taches d’annotations
d’'images a une entreprise au Kenya (Sama). Les employés étaient payés autour de 2$ de I'heure; pour
visionner des contenus toxiques : abus sexuel d’enfants, suicide, torture, ... Une enquéte sur le sujet a été
effectuée par le TIME magazine (14).

Des questions intéressantes sont a régler autour des sources de données et des droits d’auteurs. Il semble
a peu prés de notoriété publique que les modéles de langage utilisent des données sous droit d’auteurs
(22).

Entrainement des modéles, mise a disposition

Les ordinateurs utilisés dans les phases d’entrainement et d’exploitation des modéles ont besoin d’élec-
tricité pour fonctionner, et de systémes de refroidissements pour ne pas surchauffer. Ces consommations
électriques sont loins d’étre négligeables; et méme si I'accent est mis sur les émissions CO23, il ne faut
pas oublier que ce n’est pas la seule maniére de mesurer I'impact environnemental.

Les modeles génératifs sont tellement gros, que méme une fois entrainés, le fait de transformer une entrée
en sortie nécessite beaucoup de puissance de calcul, et donc d’électricité. La consommation en électri-
cité des centres de calculs est tellement importante que Google envisage méme d’y dédier des centrales
nucléaires (15). Pour avoir un ordre de grandeur des consommations électriques des modéles (hors entrai-
nement), on pourra consulter 'article (24). En plus de I'électricité, les centres de calculs ont besoin d’eau
pour refroidir les composants (25).

1.4 Facultatif - Zoom sur les réseaux de neurones

Les réseaux de neurones sont une famille de modéles de Machine Learning. lls sont utilisés dans quasi-
ment tous les grands modeles récents. Grossiérement, les réseaux de neurones sont découpés en couches.
Pour transformer une entrée en sortie, les réseaux de neurones vont transformer successivement I'entrée
avec chacune des couches. Chaque couche a ses paramétres (a la maniére de notre droite), qui peuvent
étre réglés pour minimiser I'erreur du modéle sur des données d’entrainement. On parle de réseaux pro-
fonds (Deep Learning) lorsqu’ils ont beaucoup de couches.

Le succes des réseaux de neurones dans les modeéles récents s’explique par plusieurs points :

— I'algorithme d’optimisation des paramétres de ces réseaux est trés souple (méthode du gradient); et
trés bien implémenté (Automatic Differentiation (26))

— larchitecture en couche s’adapte a beaucoup de cas, et bénéficie d'une communauté open-source
active (avec par exemple PyTorch (27)), ce qui favorise la réutilisation et le développement de nou-
veaux modéles,

— les réseaux de neurones fonctionnent bien pour modéliser beaucoup de phénomenes qu’on arrive
pas a expliciter avec des régles (générer des images, du texte, ...),

— les recherches sur ces modeéles ont été (et sont toujours) accélérées par les financements privés
(globalement toutes les grosses entreprises du web : les GAFAM* et autres entreprises américaines,
des entreprises chinoises comme Alibaba, ...), qui ont leurs propres laboratoires de recherche.

2 Explication du fonctionnement des LLM

Un LLM (Large Language Model) est un modéle de Machine Learning qui comprend le langage naturel,
et qui est capable de produire et d’analyser du texte. Comme on I'a décrit précédemment, ces modéles
ont pour la plupart plusieurs dizaines de milliards de paramétres. La phase d’entrainement d’un tel modéle
est trés coliteuse en infrastructure® - elle demande beaucoup de matériel informatique - et en temps - les
phases d’entrainement peuvent durer plusieurs mois.

Les robots conversationnels (chatbots) comme ChatGPT sont construits au-dessus de modeéles appelés
modeéles de fondations. Afin de bien comprendre comment ces chatbots fonctionnent, on commence par
présenter les modéles de fondation. On peut les voir un peu comme des moteurs de voiture. En sui-
vant cette comparaison, les agents conversationnels peuvent étre vus comme les différentes voitures que

3. Les papiers de recherches décrivant les phases d’entrainement des nouveaux modéles de langage diffusent parfois des estima-
tions de CO2. Meta estime par exemple dans un papier que le développement d’'une génération de modéles a émis autour de 1000
tonnes équivalent CO2 (23).

4. Désignait les entreprises américaines : Google, Amazon, Facebook, Apple, Microsoft. Aujourd’hui, certains noms ont changé :
Google est devenu Alphabet et Facebook Meta. L'entreprise OpenAl (qui développe ChatGPT) a été rachetée par Microsoft.

5. Le modéle V3 de I'entreprise chinoise DeepSeek a a priori (c’est encore sujet a débat, a prendre avec précaution) nécessité
bien moins de puissance de calcul que ses homologues pour leur entrainement, pour des tailles et des performances similaires (28).
Ceci va peut-étre rebattre les cartes sur les moyens de calculs nécessaires a I'entrainement de ces modéles.

I'on peut construire autour d’'un moteur. Pour se repérer, 'agent conversationnel ChatGPT est construit au-
dessus de modeles de fondations appelés GPT (Generative Pre-trained Transformer). Plusieurs modéles
existent : GPT-2, GPT-3, GPT-4...

Le terme modéle de fondation n’est pas propre aux modéles de langage ; et désigne en général
un grand modéle dont I'entrainement est conséquent; mais qui peut étre spécialisé pour de
nombreuses taches différentes : génération de texte, calcul de similarité de deux phrases, agent
conversationnel, ...

2.1 Modéle de fondation, tokens et machines a camemberts

Les modéeles de fondation sont le noyau des agents conversationnels comme ChatGPT. Le fonctionnement
précis de ces modéles varie. Aussi, on présente ici les grandes idées des modéles déja existants, mais il
faut bien garder a I'esprit que ces domaines évoluent trés vite.

On a vu dans la premiére partie de ce document que la plupart des modéles d’lA transforment une “entrée”
en une “sortie”. Les modeéles de langage ne font pas exception. La plupart d’entre eux fonctionnent un peu
comme le mécanisme d’autocomplétion des téléphones : on leur donne en entrée un début de phrase (une
séquence de mots), qu’ils sont capables de transformer en la suite de la phrase. On parle de mécanisme
auto-régressif (auto-regressive ou causal en anglais). D’autres modéles de langage sont plutot capables
de remplir des textes a trous (c’est le cas de BERT (29)). L'entrée des modéles est trés souvent appelée
“prompt” (en frangais, invite ou instruction).

Trés concretement, si on donne une séquence de mots au modele ; la premiere étape sera de la convertir en
tokens (jetons en Frangais). Les tokens sont I'unité de langage la plus fine qu'un LLM puisse comprendre. lIs
sont de taille comparable aux mots, mais il faut absolument garder a I'esprit que le modéle utilise des fokens
et non des mots voire des lettres. Une fois I'entrée découpée en tokens; le modéle tente de prédire quel sera
le prochain token. Pour résumer : “entrée” = “séquence de tokens”, “sortie” = “token suivant”. Le modéle a
une liste de fokens qu’il peut comprendre ; que I'on appelle son “vocabulaire”. La taille du vocabulaire varie
selon les modeles; en gros de 30 000 a plus de 100 000. Le découpage en tokens a I'avantage par rapport
a un découpage en mots de ne pas créer des vocabulaires trop grands. Et il a 'avantage par rapport a un
découpage en caractéres de ne pas créer des séquences encodées trop longues. C’est une sorte de juste
milieu entre ces 2 découpages (4).

La souris de l'ordinateur est un objet qui permet de manipuler les informations sur un ordinateur.

Figure 6 — Découpage d’'une phrase en fokens (30)

Rentrons un peu plus dans le détail. Juste avant de générer un token, le modéle produit un camembert - ou
diagramme circulaire. Ce camembert est en fait la sortie la plus utile du modéle®. Le modéle y a représenté
les différents fokens pouvant apparaitre a la suite de la séquence fournie en entrée. Seulement, la subtilité
des LLM réside dans le fait qu’a chacun des tokens est assigné une probabilité d’apparition. Certains fokens
ont plus de chance d’apparaitre a la suite de cette séquence (Figure 7), et sont donc représentés avec une
plus grande part de camembert.

Le point central de la génération de texte par les LLM est ici : le modéle tire au hasard le token suivant. Ce
sont des modéles de nature probabiliste, qui sont tout a fait capables de produire 2 sorties différentes pour
la méme entrée. Différentes méthodes existent pour tirer au sort le prochain foken; chacune se basant sur
le camembert. La méthode peut étre choisie lors de la génération de texte, par les utilisatrices et utilisateurs
des modeles. Citons en vrac différentes méthodes, directement issues de I'article (32) :

— Greedy (avare) : peut-étre la moins utile, elle consiste a choisir le token avec la plus forte probabilité ;
tuant le c6té aléatoire du modéle;

6. C’est la sortie la plus utile car elle contient plus d’information que simplement le token suivant. Ce camembert va pouvoir étre
utilisé pour spécialiser le modéle de fondation dans tout un tas de taches variées.

Suite de la phrase : 'La souris de 'ordinateur est un' - Llama 3.2 1B

ord é

sym log

animal des

robot
instrument out
appare
modéle

programme
jeu

petit

él

Figure 7 — Prédiction du prochain token - Llama 3.2 1B (31)

— Beam search (recherche par faisceau) : un peu plus évoluée, cette méthode consiste a regarder une
étape plus loin. Elle choisit le couple des 2 tokens suivants ayant le plus de chance d’apparaitre. Par
exemple, pour la séquence : “La souris”; le modéle prédit que 2 suites possibles sont “La souris de
I” et “La souris est un”. Dans le premier cas, le token ” de” avait une probabilité de 0.8, puis ” I'’” une
probabilité de 0.3. Dans le second, le token ” est” avait une probabilité de 0.6 et ” un” de 0.9. Au
total, la premiére séquence a donc une probabilité 0.8*0.3 = 0.24 d’apparaitre, et la seconde 0.6*0.9
= 0.54. Le modéle choisit alors la seconde.

— Sampling (échantillonnage) : ici, chaque token peut étre choisi, en fonction de sa probabilité : les
tokens avec des plus fortes probabilité ont plus de chance d’étre tirés. On peut imaginer qu’on fait
tourner la roue (celle donnant les probabilités du prochain token); et qu'on choisit le foken la ou la
roue s’arréte.

— Top K : méme méthode que I'échantillonnage, mais on ne garde que les K fokens les plus probables.

— Top p : de maniére un peu similaire a la précédente, cette méthode consiste a ne garder que les
tokens les plus probables, pour que la somme de leurs probabilités dépasse p. On choisit ensuite le
prochain token au hasard, comme dans la méthode “échantillonnage”.

L’étape consistant a utiliser le modéle pour prédire un foken est appelée I'inférence.

Dans I'exemple ci-dessus, le modéle a estimé que la suite la plus probable était “petit”; mais que les mots

“programme”, “objet” ou “animal” pouvaient aussi apparaitre. On observe ici la polysémie du mot “souris”;
tous les cas de figure sont envisagés par le modéle.

Pour prédire des textes plus longs, il suffit simplement de redonner au modéle la séquence qu'il vient de
compléter (d’ou le terme auto-régressif). Faisons cela sur 'exemple ci-dessus ; le modéle finit par prédire la
phrase : “La souris de 'ordinateur est un objet qui permet de manipuler les informations sur un ordinateur.”.
On remarque sur les derniéres prédictions de la phrase (Figure 8) que le modéle n’a plus aucun doute sur
le fait que la phrase désigne une souris d’ordinateur et non I'animal.

Hallucination
Le LLM est donc simplement entrainé a prédire quel sera le prochain token suivant une séquence. Il n’a
aucune notion de ce qui est vrai ou faux; il a simplement une idée générale des contenus qu’on lui a montré

lors de son entrainement. L'euphémisme désignant le fait qu’'un LLM raconte complétement n’importe quoi
est I “hallucination”. Les hallucinations ne sont pas étonnantes a ce stade de I'entrainement, la notion de

10

Suite de la phrase :
'La souris de I'ordinateur est un objet qui permet de manipuler les informations sur un'
Llama 3.2 1B

dis
systéme

terminal
PC

ord

Figure 8 — Prédiction du prochain token - Llama 3.2 1B (31)

vérité peut étre trés loin de celle de token probable. Cependant, elle persiste jusqu’aux agents conversation-
nels; et donc il ne faut absolument pas perdre de vue que toute information sortant d’'un tel modéle doit étre
vérifiée et sourcée. Ainsi, toute information que I'on n’est pas capable de vérifier - ou de faire vérifier - doit
étre vue comme inutilisable. Pour contourner ces problémes, les RAG (Retrieval Augmented Generation)
sont une excellente parade : ils consistent a utiliser les LLM pour chercher dans une base de donnée; puis
a fournir la source de leur réponse.

Température

La température est un nombre que les utilisateurs et utilisatrices des LLM peuvent choisir pour modifier
la génération de texte. Ce nombre représente a quel point le modéle est créatif dans ses réponses. En
théorie, n’importe quel nombre positif peut étre accepté, mais en pratique, les outils permettant d’utiliser
les modeles restreignent aux nombres entre 0 et 1 (certains acceptent jusqu’a 2). La température modifie
les probabilités d’apparition du prochain token, au moment ou le modéle produit le camembert. Cependant,
I'ordre des fokens, de celui ayant la plus faible probabilité d’apparition a celui avec la plus élevée, ne change
pas avec la température . Voir Figure 9 pour quelques exemples.

Une température proche de 0 va pénaliser les tokens avec des faibles probabilités d’apparition et favoriser
ceux avec des fortes probabilités d’apparition : cela augmente le manichéisme du modeéle. Une température
de 0 rend le modéle complétement déterministe, il choisit nécessairement le token avec la plus haute proba-
bilité d’apparition. Au contraire, une température plus éloignée de 0 va favoriser les tokens avec des faibles
probabilités d’apparition, et pénaliser ceux avec de fortes probabilités d’apparition. En fait, avec une tempé-
rature au-dela de 2, le modéle assigne des probabilité tellement faibles aux tokens les plus probables que le
texte généreé n’a plus aucun sens (c’est une sorte de créativité extréme qui consiste a raconter littéralement
n’importe quoi).

7. Pour que l'ordre des tokens change, il faudrait mettre une température négative. Dans ce cas, les tokens avec les plus faibles
probabilités d’apparitions deviennent ceux avec les plus fortes, et vice-versa. Pas trés utile... ga explique pourquoi les outils restreignent
aux températures positives.

11

Température : -0.5 Température : -0.01

Température : 0.01
t Tesults
RegfSRSTY rupe
fields ‘ﬁrﬁes
haape's
uct
-lines

Foundation

rooms
e landers
ayd

petit
m

landers

setColumns

Température : 0.3

Température : 0.5

programme

Température : 1

, animal SY™M ard
animal

& ord é
instrunf@Ret log
ord

bof¢ I'npﬁﬁqml
_ sym
icro
des excellen des
des animal
objet programme out
" out robot
ou
jeu m trument de
I appare
leu modéle
systéme
programme: pr)z)duit
objet Jeu
peu exemple
petit

petit objet

&l petit

Figure 9 — Suite de la phrase :

“La souris de I'ordinateur est un”, avec différentes températures - Llama 3.2
1B

12

2.2 Entrainement des modéles de fondation

Les grands modéles de langage sont des modéles d’apprentissage automatique : ils apprennent la structure
du langage a partir de données textuelles. De la méme maniere que la droite de I'exemple initial est com-
posée de deux parametres, les modéles de fondation sont composés de milliards - dizaines / centaines de
milliards - de parameétres. Si on initialise le modéle que I'on a présenté juste au dessus avec des parameétres
quelconques, il prédit tout simplement n’importe quoi! Dans la Figure 10 on présente le camembert produit
par le modéle avec des paramétres quelconques. Pour information, en essayant de continuer la généra-
tion, nous avons obtenu la séquence suivante : “La souris de I'ordinateur estmpjesesper Annie ?Compar ??
clothes_sink QByteArray eitherencionats Sustainabilityimanpyn ?? compatibility nth either”. Clairement, le
modele n’est pas capable de produire du texte intelligible.

Suite de la phrase :
'La souris de 'ordinateur est'
Llama 3.2 1B - Poids réinitialisés

Figure 10 — Prédiction du prochain token avec des paramétres réinitialisés - Llama 3.2 1B (31)

L'entrainement du modéle de fondation consiste alors a trouver les meilleures valeurs possibles pour les
paramétres, afin qu'’il produise du langage cohérent (dans la partie précédente, les phrases sont produites
avec le modele entrainé bien sar).

Comme dans le modéle de prédiction de température, la phase d’entrainement s’appuie sur des données. Et
¢a tombe bien, Internet contient énormément de contenus textuels! En pratique, de grands jeux de données
sont constitués a partir de données venant d’Internet : Wikipédia (33), GitHub (base de données de projets de
programmation) (34), ArXiv (base de donnée d’articles scientifiques) (35), ... On pourra consulter les Tables
1 et 2 de I'article (8) pour une vue d’ensemble des différents jeux de données utilisés pour I'entrainement des
modeles. On peut également citer le jeu de données FineWeb (36); qui reconstruit des données semblables
a celles de I'entrainement des LLM. Les données brutes sortant d’Internet ne sont pas utilisées directement
dans I'entrainement. Un énorme travail de nettoyage de données (filirage de contenus indésirables, gestions
des contenus de différentes langues, déduplication, suppression d’informations personnelles, ...) est fait en
amont.

Pour les modéles Llama, les données nettoyées constituent moins de 5TB de stockage disque (!) (23).
C’est trés peu, mais ces données ne sont pas organisées, et il est potentiellement impossible de retrouver
facilement une information dedans. Ces modéles sont alors entrainés avec environ 1 billion de tokens (mille
milliards, 1 000 000 000 000). Une fois entrainé, on peut voir ces modéles comme un moyen de synthétiser
ces données.

En pratique, I'entrainement se déroule de la maniéere suivante :

— On prend une partie du texte d’entrainement, découpé en tokens. Par exemple, 9 tokens consécutifs

dans la page Wikipédia du gratin dauphinois : “Le”, ” grat”, “in”, ” dau”, “ph”, “inois”, ” est”, ” un”,
plat”.

13

IR TEI TR] "« "«

— On tronque cette séquence en ne gardant que les 8 premiers : “Le”, ” grat”, “in”, ” dau”, “ph”, “inois”,
> est”, " un”.

— Ondonne ensuite cette séquence au modeéle, qui prédit une distribution de probabilité pour le prochain
token (c’est-a-dire, pour chaque foken du vocabulaire, le modéle estime sa probabilité d’apparition a
la suite de la séquence des 8 tokens). Cela nous donne un camembert, comme précedemment.

— Le camembert obtenu est comparé avec le résultat attendu : le token ” plat”.

— Les parameétres du modéle sont modifiés en fonction de cette comparaison.

Cette derniere étape est de loin la plus coliteuse en calcul. Elle est faite avec un algorithme (rétro-
propagation de gradient) qui permet de calculer & quel point chaque paramétre doit étre modifié pour
améliorer la sortie du modéle. C’est loin d’étre facile, d’autant plus que le nombre de paramétres est
tellement grand que de nombreux probléemes se posent sur le chemin. Les implémentations de cet
algorithme sont trés astucieuses (auto-differentiation (26), (27)).

2.3 Du modeéle de fondation a I’agent conversationnel

Le modéle de fondation, comme son nom l'indique, est a la racine de beaucoup d’applications différentes.
Il comprend le langage naturel et est capable d’en générer. C'est donc une trés bonne base pour produire
tout un tas de modéles plus spécifiques. On peut par exemple spécialiser le modele de fondation pour qu’il
classifie si une phrase est positive ou négativeg; ou si un texte contient des données personnelles ou non.
Une autre application serait d’avoir un modéle capable de calculer la similarité entre deux phrases®. Ici, on
présente une de ces spécialisations, la création d’'un agent conversationnel. C’est celle qui a vraiment
popularisée les LLM, et qui est la plus utilisée aujourd’hui. Cependant, il ne faut pas oublier que, selon les
usages, I'agent conversationnel n’est pas toujours la meilleure solution.

Afin d’obtenir ces agents conversationnels, plusieurs méthodes ont été imaginées par les développeurs
et développeuses des modéles. Les différentes méthodes utilisées dépendent des organismes produisant
les modéles, et ne sont pas toujours expliquées (il y a parfois une sorte de “secret de fabrication”). Ainsi, il
convient de rester prudent sur toute cette partie : plus particulierement que pour le reste du document, cette
section ne contient pas de “vérité générale” qui s’applique et s’appliquera a tous les modeles; mais plutot
quelques grandes idées que 'on retrouve dans plusieurs modéles (ceux qui ont publiés des informations
sur leur processus d’entrainement). On cite le survey récent (37) qui présente de maniére trés claire les
différentes méthodes pouvant étre utilisées pour spécialiser un modéle de fondation.

Voici un exemple de complétion d’'une séquence de fokens par un modéle de fondation (Llama 3.2 1B) :

Entrée
"J'ai dans mon placard des tomates pelées, du riz et du poulet. Qu'est-ce
que je peux cuisiner 7"

Sortie du modéle de fondation (Llama 3.2 1B)
"Je suis contente de pouvoir cuisiner! J'ai un petit gars qui a besoin
d'attention et de nourriture. Je vais le nourrir."

Et voici la sortie de 'agent conversationnel :

Sortie de 1'agent conversationnel (Llama 3.2 1B Instruct)

"C'est une question classique! Voici quelques idées de plats que vous pouvez
préparer avec ces ingrédients

__Riz et poulet aux tomates__

Faites chauffer du riz et du poulet dans une poéle, ajoutez des tomates pelées
coupées en dés et du sel. Servez chaud."

Ces deux réponses sont complétement différentes. Dans la premiére, le modéle a été capable de produire
du texte intelligible et cohérent avec I'entrée, mais il ne répond pas du tout a I'attente de I'utilisateur (on parle

8. https://huggingface.co/tabularisai/multilingual-sentiment-analysis
9. https://www.sbert.net/docs/sentence_transformer/training_overview.html

14

https://huggingface.co/tabularisai/multilingual-sentiment-analysis
https://www.sbert.net/docs/sentence_transformer/training_overview.html

de probléme d’alignement). Le second en revanche, y répond trés bien. Nous allons expliquer comment
on peut arriver a un tel agent.

Dans la littérature, le terme pre-training (pré-entrainement) est utilisé pour parler de I'entrainement du mo-
déle de fondation, et post-training (post-entrainement) pour parler de la spécialisation du modéle de fonda-
tion en agent conversationnel '°. Le pré-entrainement, que I'on a décrit juste avant, est coliteux (plusieurs
mois, plusieurs millions - au grand minimum - de dollars d’investissement matériel). Le post-entrainement
nécessite a priori bien moins de temps. Une fois le modéle complétement entrainé (ou méme seulement
avec le modele pré-entrainé), il est possible de continuer a le spécialiser avec les méthodes présentées ici,
pour qu’il intégre des données propres a un domaine. Cela permettra d’obtenir un modéle pour son propre
cas d’'usage (par exemple, retenir des acronymes, ou devenir spécialiste de la peinture flamande du 19e
siécle). On parle dans ce cas de fine-tuning (ajustement). Voici un exemple avec les modéles Llama ™.

On trouve deux types de méthodes majoritaires dans le post-entrainement.

— Ajustement supervisé (Supervised Fine Tuning (SFT)),
— Ajustement par renforcement (Reinforcement Learning (RL)).

2.3.1 Ajustement supervisé

Cette phase consiste a continuer I'entrainement que I'on a décrit précédemment (du modéle de fondation),
mais avec un nouveau jeu de données. Au lieu de prendre des suites de tokens issues d’Internet, on utilise
des jeux de données de conversations entre un agent (aimable, prés a aider les gens, ...) et un utilisateur.
A l'origine, ces jeux de données ont été constitués par des experts humains, payés pour répondre a des
questions, afin que les échanges soient enregistrés dans le jeu de données. Désormais, il est trés probable
que ces jeux de données soient partiellement produits par des LLM (les experts humains peuvent étre aidés
dans la rédaction de leur réponse par des LLM, par exemple).

Ci-dessous, on montre un exemple de conversation, dont les réponses ont été remplies par des humains.
On observe qu’'une méme question admet plusieurs formulations de réponse différentes.

text role lang
string string string

Combien de livres Hunger Games existe-t-il ? ca fait

.) rompter fr
environ combien de pages ? promp

I1 existe 4 livres Hunger Games: -Hunger Games (384

pages) -Hunger Games: L'embrasement (400 pages) -.. CEERESLENS || s

I1 v a 3 ouvrages principaux a la série Hunger

. . . assistant fr
Games, avec un préquel. En version frangaise, ca..

I1 v a 3 livres principaux (1 prequel) et c¢a fait

q q g istant £
beaucoup de pages : Livre 1 : 399 Livre 2 :400 Livr. assistan T

Figure 11 — Question - Réponse entre un utilisateur et un assistant. OASST1 (38) - Hugging Face

C’est aussi I'occasion de conditionner le modeéle a formuler des réponses spécifiques dans des cas précis :
dire qu’il ne connait pas la réponse a une question, éviter de répondre aux questions sensibles, ... L'objectif
est de transformer le modéle de fondation, qui est une sorte de synthése de tout internet, en une synthése
des différents experts ayant participé a rédiger les conversations d’entrainement.

La procédure d’entrainement est la méme que pour le modéle de fondation (prédiction du camembert pour
le prochain token, et ajustement des paramétres en fonction du token réel); mais il y a une nouveauté

10. Avec les termes pre-training et post-training, on se demande a quel moment se passe le “training”.. En fait, 'entrainement est la
combinaison du pre-training et du post-training.
11. https://github.com/meta-llama/llama-cookbook

15

https://github.com/meta-llama/llama-cookbook

importante : le rajout de certains fokens spéciaux. Ci-dessous, on a affiché I'encodage en fokens d’'un
échange utilisateur-assistant, juste avant qu'’il soit donné au modéle pour I'entrainement.

<|im_start|>user<|im_sep|>Combien de livres Hunger Gam
es existe-t-il ? ga fait environ combien de pages 7<|i
m_end |><|im_start|>assistant<|im_sep|>I1 existe 4 livr
es Hunger Games: -Hunger Games (384 pages) —Hunger Gam
es: L'embrasement (400 pages) -Hunger Games: La Révolt
e (339 pages) -Hunger Games: La Ballade du Serpent de
1'Oiseau Chanteur (1712 pages) 384+400+339+1712= 2835
pages (Le nombre de page est calculé a partir des édit
ions originales de ces livres, et non des versions fra
ncaises)<|im_end |><|im_start |>assistant<|im_sep|>

Figure 12 — Encodage d’un échange utilisateur-assistant (38) (39)

Pour que le modéle comprenne que c’est a lui de formuler une réponse, des fokens spéciaux sont rajoutés a
son vocabulaire. lls sont ensuite intégrés artificiellement aux données d’entrainement et, lors de I'apprentis-
sage, le modele comprend qu’il doit formuler une réponse juste aprés les tokens : “<|im_start|>”, “assistant”,
“<|im_stop|>". Il existe d’autres fokens spéciaux; par exemple pour utiliser des outils (4). En rajoutant un
token encodant le fait d’aller chercher une information sur internet, il est possible de conditionner le modéle
a produire ce token dés qu'’il n’est pas sdr d’une réponse. Le serveur donnant accés au modele peut alors
détecter ce token et insérer dans le prompt le résultat de la recherche. Un autre exemple est un token si-
gnalant le début de I'exécution de code, généré par le modéle dés qu’il comprend qu'il faut utiliser du code
pour répondre a une question.

A chaque fois, le modéle comprend quand utiliser ces tokens spéciaux car il a vu de nombreux exemples
d’utilisation dans son jeu de données d’entrainement.

2.3.2 Ajustement par renforcement

L'objectif de I'ajustement par renforcement est de laisser le modéle s’exercer. L'idée est de laisser le modéle
produire des réponses pour une question donnée, et de juger lesquelles sont les meilleures, afin d’encou-
rager le modele a produire ce genre de réponses a l'avenir.

Cependant, lorsqu’une question n'admet pas de bonne ou de mauvaise réponse, par exemple : “Fais moi
une blague sur les ordinateurs”, il est complexe de juger de la qualité d’'une réponse. Une solution utilisée
(notamment pour ChatGPT 3 (40)) est d’entrainer un autre modéle a prédire un score de qualité sur les
réponse du LLM. Ces modéles sont appelés des reward models (modéles de récompenses); et sont en-
trainés avec des retours humains '?, pour donner des scores ressemblant a ce qu’un humain prédirait. En
utilisant ce modeéle auxiliaire, on peut dire au modeéle de langage quelles réponses sont les plus appropriées
parmi celles qu’il nous a données. Il a été observé que cela développe sa capacité a se comporter comme
un humain (40).

3 Commentreprésenter des tokens avec des nombres ? Les embed-
dings

Dans cette partie, on présente comment les fokens sont utilisés par les modéles. C’est I'étape d’embedding,
qui désigne la transformation des tokens en des séquences de nombres (vecteurs).

12. Le terme précis : RLHF, Reinforcement Learning with Human Feedback.

16

3.1 Vecteurs

On commence par expliquer brievement ce qu’est un vecteur dans notre contexte. C’est en pratique tout
simplement une liste de nombres. Par exemple :

0
1.2
0.2

est un vecteur. La longueur de la liste (ici 3) est appelée dimension du vecteur. Chacun des élément du
vecteur est appelé une “composante”, ou “coordonnée”. Un point crucial est qu'il est possible d’effectuer
des opérations sur des vecteurs. On définit ainsi la somme de 2 vecteurs comme un nouveau vecteur, dont
les composantes sont la somme des composantes des 2 vecteurs. Par exemple :

0 18 18
1.2 + (21| = [3.3
0.2 0.9 1.1

Un vecteur a 2 dimensions peut étre représenté dans un plan, et a 3 dimensions dans I’espace. Prenons
I'exemple (Figure 13) des deux vecteurs :
3 0
=20 1]~

Une raison pour visualiser les vecteurs par une fléche issue de I'origine, qui pointe sur les coordonnées
du vecteur, est que ¢a permet de bien comprendre ce que représente la somme de 2 vecteurs. Le vecteur
obtenu en sommant les deux premiers correspond simplement a la composition des deux fléches. Il faut
imaginer qu’un vecteur encode un déplacement, et que la somme encode la composition des déplacements.

Si le vecteur a plus de 3 dimensions, on peut garder I'intuition qu’il correspond a une fléche, mais dans un
espace que I'on ne peut pas trop visualiser! Malheureusement, c’est trés souvent le cas...

3.2 Embedding

En traitement du langage, 'embedding correspond a la transformation du texte en vecteurs. La dimension
des vecteurs varie, mais peut étre de plusieurs centaines - jusqu’a plusieurs milliers! Difficile alors de se
représenter ces vecteurs. Cette représentation des tokens est utile car la traduction tokens-vecteurs est
faite pour que 2 séquences de tokens sémantiquement proches (par exemple “chocolat” et “cacao”) aient
des vecteurs dont les directions sont proches. Les usages sont trés nombreux et ne s’arrétent pas a la
génération de texte : calcul de similarité de 2 phrases, classification selon le sens d’'un texte, recherche
documentaire, ... Selon l'usage, les vecteurs dont on a besoin peuvent étre radicalement différents. On
pourra consulter le site SBERT '3, présentant des implémentations.

Attention, le terme embedding désigne a la fois I'action de transformer un token en un vecteur,
et le vecteur obtenu.

On recense plusieurs méthodes pour transformer des tokens (ou directement des mots) en vecteurs. Cer-
taines existaient avant la popularisation des LLM.

Par exemple Word2Vec (41); issu de chez Google en 2013. Word2Vec désigne deux modéles de Machine
Learning ; capables de transformer des mots en vecteurs. Pour jouer avec ces représentations, vous pouvez
regarder Cemantix '*, un jeu qui consiste tout simplement a deviner un mot, et qui s’appuie justement sur les

13. Sentence Transform (SBERT) : https://sbert.net/index.html.
14. Cemantix : https://cemantix.certitudes.org/.

17

https://sbert.net/index.html
https://cemantix.certitudes.org/

08

06

04

02

0z) 02 04 08 08 1 12 14 18 18 2 22 24 26 28 3 32

-02

04

-06

-08

Figure 13 — Le vecteur vert est la somme du rose et du bleu. Il pointe sur I'endroit ou on atterrit aprés avoir
suivi le rose, puis le bleu.

distances entre vecteurs, obtenues avec Word2Vec. Il est intéressant de remarquer que ces deux modeéles
sont entrainés sur une autre tache, et que la représentation des mots en vecteur est en quelque sorte une
étape intermédiaire qui permet aux modeles de bien réaliser cette tache. Le premier modele est entrainé a
remplir un texte avec un unique mot manquant, au centre (un peu comme les LLM finalement); et le second
a trouver les mots en entourant un autre (41). Comme il est complexe de déterminer si un embedding est
correct; on est un peu obligé de passer par ce genre de chemin détourné pour entrainer des modéles
d’embeddings. Remarquons qu’une fois les embeddings calculés pour tous les mots d’'un vocabulaire, la
traduction mot-vecteur est trés rapide (il suffit de regarder dans le dictionnaire!). Dans le méme style, on
peut citer GloVe (42); de la méme époque.

Dans le cas des LLM, les tokens sont transformés en vecteur dés leur entrée dans le modéle. Les com-
posantes de chaque vecteur d’embedding du vocabulaire sont initialisées au hasard, puis apprises lors
de I'entrainement : ce sont des paramétres du modéle. En un certain sens, comme avec Word2Vec, les
embeddings sont une conséquence de I'entrainement du LLM a prédire le prochain token d’'une séquence
donnée. Pour mieux prendre en compte les informations sur la position de chaque token dans une phrase,
les LLM ont en plus des “positional embeddings” (vecteurs de position). Ce sont d’autres vecteurs, appris
lors de I'entrailnement ou non, qui encodent la position d’un foken dans une phrase. La encore, plusieurs
variantes existent (positional embedding (43), rotary positional embedding (44) (45) (46)).

Une des petites révolution des LLM consiste a utiliser une architecture appelée “transformer” (43), qui per-
met aux embeddings de chacun des tokens (sous forme de vecteur) d’étre modifiés pour prendre en compte
les autres tokens de la séquence. En utilisant des transformers, il est donc possible de faire évoluer les em-
beddings initiaux (appris pendant I'entrainement) pour qu’ils deviennent plus aboutis (deux embeddings du
méme mot seront alors différent selon le contexte). Ceci donne lieu aux modéles d’embeddings modernes;
dans lesquels I'étape de traduction doit étre refaite a chaque fois que I'on veut transformer un foken en
vecteur dans un contexte précis. Impossible dans ce cas de créer un dictionnaire tokens-vecteurs! Ces
modeéles sont alors plus colteux que les anciens (Word2Vec par exemple) a utiliser, car les transformer

18

restent des architectures avec beaucoup de paramétres.

Récemment, un retour en arriére est observé : les embeddings statiques (47). lls fonctionnent lors de la
traduction comme les modéles style Word2Vec : ce sont des dictionnaires tokens-vecteurs. Un exemple
est Model2Vec (48). C’est une technique permettant d’utiliser des modéles prenant en compte le contexte
(transformer) pour créer un dictionnaire. Une fois créé, le dictionnaire ne permet pas de prendre en compte
le contexte, et 'embedding d’un token est toujours le méme. Néanmoins, la technique est suffisamment au
point pour que cela n’affecte pas trop la qualité des embeddings.

4 Ecosystéme et historique des LLM

Les grands modéles de langage ont profondément transformé le domaine du traitement automatique du lan-
gage grace a I'augmentation importante des ressources informatiques, a la disponibilité accrue de grandes
bases de données textuelles et a I'innovation majeure des architectures Transformer. Cette partie explique
clairement ce qui différencie les LLM et retrace leur évolution technologique et commerciale.

4.1 Différencier les LLM

Les modéles de langage se distinguent notamment selon leur acces, leur taille, leur contexte et leur appli-
cation.

Ouverture des modeéles

Bien que de nombreux modéles de langage se revendiquent ouverts ou « open source », leur transparence
réelle varie considérablement. L'ouverture d’'un modeéle implique plusieurs critéres : disponibilité du code
source, acces aux données et poids d’entrainement, existence de licences explicites, ainsi que qualité et
exhaustivité de la documentation associée notamment concernant la phase d’entrainement du modéle.

Il apparait que certains modéles offrent une transparence significative sur la plupart de ces critéres (par
exemple, OLMo (49) d’Allen Al, qui publie ses données d’entrainement, son code source et des documen-
tation détaillées), alors que d’autres modeles populaires demeurent essentiellement opaques (DeepSeek
R1 (50), dont les données d’entrainement restent fermées, ou Llama 3.3 (51), qui nécessite une licence
spécifique et dont les données ne sont pas divulguées).

Ainsi, le degré d’ouverture influence directement la possibilité d’utiliser ces modéles dans des contextes
scientifiques, éducatifs ou responsables.

Des ressources comme Opening Up ChatGPT (52) et 'Open Source Al Index (53) proposent des évaluations
completes et a jour du degré d’ouverture des modéles de langage. On pourra également consulter le tableau
Figure 14.

Accés aux modéles

Les modéles fermés comme GPT-4 (54) ou Claude (55) sont accessibles uniquement via des interfaces
propriétaires (API'® ou applications web), sans possibilité d’accéder a leur code ou a leurs paramétres
internes. Cela facilite leur utilisation mais limite la transparence. Les modéles a tendance open-source
comme LLaMA (56) offrent un accés complet a leur code source et a leurs paramétres, permettant ainsi une
utilisation plus flexible, notamment pour des développements spécifiques.

Taille et nombre de paramétres

15. API : Application Programming Interface, désigne ici une maniére automatisée (machine a machine) d’accéder au modeéle. Ceci
permet par exemple de créer un programme informatique qui utilise de maniére automatique des modéles hébérgés ailleurs que sur
son ordinateur.

19

FAccT 24, June 03-06, 2024, Rio de Janeiro, Brazil Andreas Liesenfeld and Mark Dingemanse

Project Availabili D i Access
Open ata LLM weights RL data RL weights License Code Avrchitecture i Modelcard Datasheet Package API

OLMo 78 Instruct
BLOOMZ
AmberChat

Open Assistant -
OpenChat 3575 IR N 2 2 2 B T
Pythia-Chat-Base-7 . ---_
Cerebras GPT 111... B
RedPajama-INCITE...
dolly

TuluV2 DPO 70B
MPT-30B Instruct
MPT-7B Instruct
trix

Vicuna 13Bv 1.3
minChatGPT
ChatRWKV

BELLE

WizardLM 13B v1.2
Airoboros L2 70B G.--
ChatGLM-6B

Mistral 7B-Instruct
WizardLM-7B

Qwen 1.5
StableVicuna-13B
Falcon-40B-instruct
UltraLM

Yi 34B Chat

Koala 138

Mixtral 8x7B Instruct
Stable Beluga 2
Stanford Alpaca
Falcon-180B-chat
Orca 2

Command R+
Gemma 7B Instruct
LLaMA2 Chat
Nanbeige2-Chat
Llama 3 Instruct
Solar 708

Xwin-LM

ChatGPT

Figure 2: Openness of 40 text generators described as open, with OpenAI’s ChatGPT (bottom) as closed reference point. Every
cell records a three-level openness judgement (v open, ~ partial or X closed). The table is sorted by cumulative openness, where
v/ is 1, ~ is 0.5 and X is 0 points. RL may refer to RLHF or other forms of fine-tuning aimed at fostering instruction-following
behaviour. For the latest updates see: https://opening-up-chatgpt.github.io

Figure 14 — Tableau recensant le degré d’ouverture des grands modéles de langage entrainés par instruc-
tions - (52)

20

La taille d’'un LLM impacte directement ses capacités et ses besoins en ressources. Les modéles petits
(quelques millions a quelques centaines de millions de paramétres) fonctionnent facilement sur des ordina-
teurs standards et conviennent pour des taches simples.

Les modéles grands (plusieurs dizaines a centaines de milliards de paramétres) nécessitent une infrastruc-
ture importante, et sont adaptés pour des taches complexes comme la traduction ou la génération détaillée
de texte.

Taille du contexte

Le contexte est la quantité de texte (en nombre de tokens) que le modéle peut traiter en une seule fois. Des
modeles comme Gemini 1.5 (57) traitent des contextes allant jusqu’a un million de tokens, permettant ainsi
de gérer des textes ou documents trés longs.

Domaine d’application

Certains modéles sont spécialisés dans des domaines précis (médical, juridique, financier), offrant une
grande précision mais limitée a ce secteur. D’autres modeéles restent généralistes, permettant une utilisation
polyvalente.

4.2 Historique des LLM

L’évolution des LLM peut étre divisée en plusieurs grandes périodes historiques.

4.2.1 1990-2010 : Approches statistiques et neuronales

Les premiers modéles de langage s’appuyaient sur des n-grammes (58) (séquences de n mots consécu-
tifs, permettant d’estimer la probabilité d’apparition des mots) (59). lls exploitaient les statistiques de co-
occurrence de mots, mais étaient limités aux séquences courtes en raison d’'une complexité exponentielle
(60). Vers la fin des années 1990, I'utilisation de réseaux neuronaux récurrents (RNN (61) - Recurrent Neural
Network) — c’est-a-dire des modéles qui traitent I'information séquentiellement en conservant une mémoire
des éléments précédents — a été introduite (61). Ces approches ont rapidement évolué avec 'émergence
des LSTM (62) (Long Short-Term Memory, des réseaux capables de conserver I'information sur de longues
périodes grace a des mécanismes de mémoire) et, plus tard, des GRU (63) (Gated Recurrent Units) une
variante simplifiée des LSTM utilisant des portes pour contrdler le flux d’information (62).

Les réseaux neuronaux récurrents comme les LSTM présentaient des difficultés d’entrainement sur de
grands corpus, notamment a cause de la complexité des calculs nécessaires. L'arrivée des réseaux neu-
ronaux a propagation avant (feed-forward), comme le Neural Network Language Model (NNLM) (64), a
introduit les représentations distribuées des mots (word embeddings). Ces représentations vectorielles ont
permis de saisir les similarités sémantiques et les relations complexes entre les mots, dépassant les limita-
tions des approches statistiques traditionnelles basées sur les n-grammes.

Cette période est également liée a 'amélioration des techniques de lissage (pour attribuer des probabili-
tés non nulles aux séquences jamais observées dans les données d’entrainement) pour les modéles n-
grammes (58), et leur optimisation pour des corpus de plusieurs milliards de mots (65). Ensuite, Mikolov et
al. (66) ont commencé a explorer les réseaux de neurones récurrents pour la modélisation du langage, intro-
duisant notamment des architectures RNN optimisées qui réduisaient considérablement le temps d’entrai-
nement tout en améliorant les performances prédictives. Ces travaux ont posé les fondations conceptuelles
et techniques des futures architectures comme les GRU (67), en démontrant la viabilité des approches
neuronales récurrentes pour capturer des dépendances a long terme dans le langage.

21

4.2.2 2011-2016 : Word Embeddings et avancées RNN

Word2Vec (41) et GloVe (42) ont introduit des méthodes pour convertir les mots en vecteurs denses, dans
lesquels la proximité entre les vecteurs refléte la similarité sémantique des mots. Ces techniques, en permet-
tant de placer les mots dans un espace numérique a dimension réduite, ont amélioré I'efficacité des réseaux
neuronaux récurrents. La diffusion de bibliothéques d’apprentissage profond, tel que TensorFlow, a aussi
accéléré ces progrés. Durant cette période, le mécanisme d’attention, procédé qui permet de pondérer I'im-
portance de chaque élément d’'une séquence lors de la prédiction en calculant des scores de pertinence, a
commenceé a étre exploité dans des applications telles que la traduction automatique (67).

Avant ces innovations, les mots étaient souvent représentés sous forme “one-hot” (un vecteur avec un seul
1 a lindex du mot et des 0 ailleurs), ce qui ne permettait pas de capturer la similitude entre les mots et
engendrait des vecteurs de trés grande dimension. Les méthodes de word embeddings comme Word2Vec
ou GloVe viennent plutdt fournir une représentation compacte et informative.

Avancées des RNN et mécanisme d’attention

L'intégration des word embeddings a amélioré les représentations d’entrée des réseaux de neurones récur-
rents (RNN), ce qui a permis d’optimiser leurs performances pour des tdches comme la classification de
textes ou la traduction automatique. L'arrivée de frameworks tels que Theano, TensorFlow et PyTorch (27)
a facilité 'expérimentation et la mise en ceuvre de modéles plus avancés, comme les architectures LSTM
(Long Short-Term Memory) et GRU (Gated Recurrent Units).

Cependant, ces modeéles éprouvaient des difficultés a gérer des dépendances lointaines. lls peinaient a
se souvenir des informations antérieures et a relier des mots éloignés dans le texte. L'introduction du mé-
canisme d’attention, associée a la montée en puissance du calcul paralléle sur GPU, a ouvert la voie aux
architectures sans récurrence, annongant 'émergence des Transformers.

Le mécanisme d’attention (68) permet au modéle d’attribuer un score de pertinence a chaque mot d’'une
séquence. Contrairement aux méthodes antérieures, qui réduisaient I'ensemble de la séquence a un vecteur
fixe, cette approche crée un vecteur contextuel différent pour chaque étape de la prédiction, en fonction
de la position du mot. Ce procédé améliore la prise en compte des relations entre mots éloignés et, par
conséquent, la qualité des prédictions.

4.2.3 2017-2019 : Apparition des Transformers

L'introduction de I'architecture Transformer par Vaswani et al. (43), présentée dans « Attention is All You
Need », représente une rupture par rapport aux approches séquentielles des RNN. Le Transformer exploite
le mécanisme d’attention multi-tétes pour analyser simultanément toutes les positions d’'une séquence, ré-
duisant ainsi le temps d’entrainement et capturant les dépendances a longue distance. Le self-attention
calcule pour chaque mot un score de pertinence par rapport aux autres, permettant de générer un vec-
teur contextuel adapté a chaque étape de prédiction. Cette structure encodeur-décodeur a ouvert la voie
a des modéles de plus en plus performants, comme GPT-1 et BERT en 2018, suivis par GPT-2, XLNet et
RoBERTa en 2019, qui ont tous contribué a améliorer les performances sur diverses taches.

Modeéles phares de cette période

GPT-1 (Generative Pre-trained Transformer 1) (69) : GPT-1 a été I'un des premiers modéles a démontrer
I'efficacité du pré-entrainement massif d’'un Transformer (en utilisant uniquement la partie décodeur) pour
la génération de texte et le transfert vers d’autres taches. Il utilise 117 millions de paramétres.

BERT (Bidirectional Encoder Representations from Transformers) (29) : BERT utilise la partie encodeur du
Transformer et est pré-entrainé sur deux taches : la prédiction de mots masqués (“Masked Language Mo-
deling”) et la prédiction de la phrase suivante (“Next Sentence Prediction”). Cette approche bidirectionnelle
(considérant a la fois le contexte gauche et le contexte droit) permet a BERT de capturer des représentations
contextuelles trés riches. BERT existe en différentes tailles, la plus grande ayant 340 millions de parameétres
(BERT-Large).

22

GPT-2 (70) : GPT-2 est une version beaucoup plus grande de GPT-1 (jusqu’a 1,5 milliard de paramétres).
Il a été entrainé sur un corpus encore plus vaste et a démontré des capacités de génération de texte
impressionnantes, parfois difficiles a distinguer d’un texte écrit par un humain.

XLNet (71) : XLNet est un modéle qui combine les avantages de I'approche autorégressive (comme GPT)
et de I'approche bidirectionnelle (comme BERT). Il utilise une méthode de pré-entrainement appelée “Per-
mutation Language Modeling” qui lui permet de prendre en compte toutes les permutations possibles de
I'ordre des mots dans une phrase.

RoBERTa (Robustly Optimized BERT Pretraining Approach) (72) : RoBERTa est une version optimisée
de BERT. Les auteurs ont montré qu’en modifiant certains hyperparamétres, en entrainant le modéle plus
longtemps et sur plus de données, et en supprimant la tache de “Next Sentence Prediction”, ils pouvaient
améliorer significativement les performances de BERT.

4.2.4 2020-2021 : Montée en puissance et adoption

Entre 2020 et 2021, les modéles de langage de trés grande échelle émergent, qui, en combinant augmenta-
tion de taille et apprentissage en contexte, ont transformé I'approche des taches de traitement du langage.

GPT-3 (73) (développé par OpenAl) a repoussé les limites de la taille des modéles en intégrant 175 milliards
de parameétres, soit plus de 100 fois la taille des modéles précédents comme BERT-Large, et plus de dix fois
la taille de GPT-2. L'apparition de ce modeéle introduit des capacités inédites telles que le few-shot learning
(voir ci-dessous), sans nécessiter un entrainement spécifique pour chaque tache. Pour la premiére fois,
un modele pouvait s’adapter dynamiquement a de nouvelles tdches simplement a travers des instructions
textuelles et quelques exemples dans le prompt, la ou les approches précédentes nécessitaient systémati-
quement un fine-tuning avec des milliers d’exemples étiquetés pour chaque nouvelle application.

— Zero-Shot : Le modele est capable d’effectuer une tache sans avoir été explicitement entrainé sur des
exemples de cette tache. On lui donne simplement une description de la tache en langage naturel (par
exemple, “Traduire de I'anglais au frangais : cheese =>") et il génére la sortie attendue (“fromage”).

— One-Shot : Le modéle recoit un seul exemple de la tache a accomplir (par exemple, “Traduire de
I'anglais au francais : sea otter => loutre de mer, cheese =>") avant de générer la sortie (“fromage”).

— Few-Shot : Le modele recoit quelques exemples (typiquement entre 2 et une dizaine, voire une
centaine) de la tache (par exemple, plusieurs paires de mots anglais-frangais) avant d’effectuer la
tache sur une nouvelle entrée. L'idée est de montrer au modéle le format attendu de la sortie, ainsi
que quelques exemples de la relation entrée-sortie.

— In-context learning : L'ensemble de ces méthodes (zero-shot, one-shot et few-shot) sont des
formes de “in-context learning”. Le modéle apprend a effectuer une tache a partir d’instructions
ou d’exemples fournis dans le contexte de la requéte, sans modification de ses paramétres
(contrairement au fine-tuning).

Ces approches réduisent considérablement, voire éliminent, le besoin de grands ensembles de données
étiquetées pour chaque nouvelle tache. Cela rend les modéles de langage beaucoup plus polyvalents et
faciles a adapter a de nouveaux usages tout en se rapprochant de la capacité humaine a apprendre rapi-
dement a partir de quelques exemples. Des modéles comme T5 (Text-to-Text Transfer Transformer) (74) et
Megatron-LM (75) ont poursuivi la tendance a 'augmentation de la taille et des capacités.

Diversification et spécialisation des modéles

— T5 (Text-to-Text Transfer Transformer) (74) développé par Google, est un modéle unifié qui reformule
toutes les taches de NLP comme des taches de texte a texte. Par exemple, la traduction est formulée
comme “Translate English to German : That is good. =>”, |a classification de sentiment comme “Clas-
sify the sentiment of this sentence as positive or negative : | love this movie. =>”, etc. Cette approche
permet de pré-entrainer un seul modéle sur un mélange de taches et de le fine-tuner facilement sur
de nouvelles taches. T5 a été pré-entrainé sur le corpus “Colossal Clean Crawled Corpus” (C4).

23

— Megatron-LM (75) (et développements ultérieurs) : Megatron-LM est un projet de NVIDIA visant a
entrainer de trés grands modéles de langage Transformer. Il se concentre sur les techniques permet-
tant de distribuer I'entrainement sur de nombreux GPU, car les modéles de cette taille ne peuvent
pas tenir sur un seul appareil.

— Codex (OpenAl) : Codex est un exemple de spécialisation des modeles de langage. Il est basé
sur GPT-3, mais il est fine-tuné sur un grand corpus de code source provenant de dépéts publics
(comme GitHub). Codex est capable de générer du code a partir de descriptions en langage naturel,
d’aider a compléter du code, de traduire entre différents langages de programmation, et d’expliquer
le fonctionnement du code. Il alimentait des outils comme GitHub Copilot.

4.2.5 2022 : Démocratisation et open-source

Fin 2022, ChatGPT, basé sur une version améliorée de GPT-3 (souvent appelée GPT-3.5 ou gpt-3.5-turbo), a
permis de rendre les grands modéles de langage accessibles au grand public via une interface web intuitive.
Contrairement aux versions antérieures, disponibles uniquement via une API payante pour les développeurs,
ChatGPT offre une interaction en langage naturel qui ne requiert aucune compétence technique particuliére.
Les réponses, a la fois fluides et pertinentes — capables d’expliquer des concepts complexes, de rédiger des
textes dans divers styles ou méme de générer du code — ont suscité un véritable effet viral sur les réseaux
sociaux, transformant ainsi 'usage des LLM en une expérience quotidienne.

2022 a également marqué I'accélération du mouvement open-source des LLM. Des projets comme BLOOM,
développé par le collectif BigScience (rassemblant plus de 1000 chercheurs et entrainé sur le supercalcu-
lateur Jean Zay), offrent un modele multilingue dont le code, les données d’entrainement et les poids sont
entiérement accessibles, permettant de générer du texte dans 46 langues et 13 langages de programma-
tion. De leur cbté, les modéles tels qu'OPT de Meta Al — bien que les versions les plus volumineuses soient
soumises a des licences restrictives — ainsi que LLaMA et StableLM (76), illustrent comment 'open-source
contribue a démocratiser I'acces, accélere la recherche, et renforce la transparence des modéles en facili-
tant 'audit des systémes.

4.2.6 2023-2024 : Multimodalité et spécialisation

A partir de 2023, les LLM intégrent la multimodalité, c’est-a-dire la capacité de traiter et générer simul-
tanément du texte et des images. Par exemple, GPT-4, notamment dans sa version multimodale souvent
désignée GPT-4V (pour « Vision »), peut analyser des images, répondre a des questions sur leur contenu ou
générer des légendes explicatives. D’autres modéles, tels que Flamingo (77) de DeepMind ou PaLM-E (78)
de Google, combinent des capacités linguistiques avec des encodeurs visuels pour étendre leur application
a des domaines comme la robotique, tandis que LLaVA (79) émerge comme initiative open-source.

La concurrence s’est également intensifiée avec I'arrivée de nouveaux acteurs et 'émergence de modéles
spécialisés. Des systemes comme Claude d’Anthropic (55), Gemini de Google (57) et LLaMA de Meta (23),
proposés en différentes tailles et souvent accompagnés de versions optimisées pour le dialogue, offrent des
fenétres de contexte considérablement étendues — jusqu’a 1 million de tokens pour Gemini 1.5 Pro (57) ou
200k pour Claude 3 (55) — permettant de traiter des textes plus longs et complexes. Des modéles dédiés
a des taches spécifiques, tels que ceux pour la traduction automatique, la génération de code (comme
Codex (80) ou Code LLaMA (81)), la rédaction scientifique, I'analyse financiére ou encore la réponse a des
questions médicales (par exemple, Med-PaLM (82) de Google (82) et BioBERT (83)), ainsi que dans le
domaine juridique avec LegalBERT (84), indiquent une spécialisation croissante des LLMs.

4.3 Acces et déploiement des LLM
Différentes méthodes existent pour utiliser ces modéles selon les besoins :

Interfaces en ligne :

Mistral, ChatGPT, Claude.ai ou Gemini proposent des interfaces faciles d’accés via navigateur ou API.

24

— Mistral : https://chat.mistral.ai/chat,

— ChatGPT :https://chatgpt.com/,

— Claude.ai : https://claude.ai,

— Gemini : https://gemini.google.com/?hl=fr.

Déploiement local :

Des outils simples (Ollama (85), LM Studio (86), llama.cpp (87)) permettent d’utiliser les modéles localement
pour garantir confidentialité et contrdle.

— Ollama : https://ollama.com/search,
— LM Studio : https://Imstudio.ai/models,
— llama.cpp : https://github.com/ggmi-org/llama.cpp.

API pour développeurs :

OpenAl, Anthropic, Google Gemini et Mistral Al proposent des API pour intégrer facilement ces modéles
dans des applications.

— API de OpenAl : https://platform.openai.com/docs/overview,
— API de Claude par Anthropic : https://www.anthropic.com/api,
— API de Google Gemini : https://ai.google.dev/,

— API de Mistral Al : https://docs.mistral.ai/api/.

Plateformes de modeéles :

HuggingFace et Replicate (88) facilitent la comparaison et I'évaluation des performances des différents
modeles disponibles.

— HuggingFace spaces : https://huggingface.co/spaces,
— Replicate : https://replicate.com/explore.

L'écosysteme des LLM est en constante évolution, apportant régulierement de nouvelles possibilités ainsi
que des défis techniques et éthiques a considérer.

5 Bibliographie

1) Esser, Patrick, et al. Scaling Rectified Flow Transformers for High-Resolution Image Synthesis. 2024,
https://arxiv.org/abs/2403.03206.
2) Louapre, David. Comment Fonctionne ChatGPT ? https://scienceetonnante.com/2023/04/14/comment-
fonctionne-chatgpt/. Accessed 4 Feb. 2025.
3) Sabatou, Alexandre, et al. ChatGPT, Et Aprés ? Bilan Et Perspectives de l'intelligence Artificielle. 2024,
https://www.senat.fr/notice-rapport/2024/r24-170-notice.html.
4) Karpathy, Andrej. Deep Dive into LLMs Like ChatGPT. https://www.youtube.com/watch?v=7xTGNNLPyMI.
Accessed 25 Feb. 2025.
) CNRS. Fidle. 2025, https://fidle.cnrs.fr/w3/.
) CNRS, IDRIS -. Panoram’lIA. https://www.youtube.com/@idriscnrs. Accessed 12 Mar. 2025.
) Jamil, Umar. YouTube. https://www.youtube.com/@umarjamilai. Accessed 5 Mar. 2025.
) Liu, Yiheng, et al. Understanding LLMs : A Comprehensive Overview from Training to Inference. 2024,
https://arxiv.org/abs/2401.02038.
9) Consommation Quotidienne Brute Régionale. https://odre.opendatasoft.com/explore/dataset/consommation-
quotidienne-brute-regionale. Accessed 3 Feb. 2025.
10) Température Quotidienne Régionale. https://odre.opendatasoft.com/explore/dataset/temperature-
quotidienne-regionale. Accessed 3 Feb. 2025.

5
6
7
8

25

https://chat.mistral.ai/chat
https://chatgpt.com/
https://claude.ai
https://gemini.google.com/?hl=fr
https://ollama.com/search
https://lmstudio.ai/models
https://github.com/ggml-org/llama.cpp
https://platform.openai.com/docs/overview
https://www.anthropic.com/api
https://ai.google.dev/
https://docs.mistral.ai/api/
https://huggingface.co/spaces
https://replicate.com/explore
https://arxiv.org/abs/2403.03206
https://scienceetonnante.com/2023/04/14/comment-fonctionne-chatgpt/
https://scienceetonnante.com/2023/04/14/comment-fonctionne-chatgpt/
https://www.senat.fr/notice-rapport/2024/r24-170-notice.html
https://www.youtube.com/watch?v=7xTGNNLPyMI
https://fidle.cnrs.fr/w3/
https://www.youtube.com/@idriscnrs
https://www.youtube.com/@umarjamilai
https://arxiv.org/abs/2401.02038
https://odre.opendatasoft.com/explore/dataset/consommation-quotidienne-brute-regionale
https://odre.opendatasoft.com/explore/dataset/consommation-quotidienne-brute-regionale
https://odre.opendatasoft.com/explore/dataset/temperature-quotidienne-regionale
https://odre.opendatasoft.com/explore/dataset/temperature-quotidienne-regionale

11) Redmon, Joseph, et al. “YOLOvV3 : An Incremental Improvement.” arXiv, 2018, https://pjreddie.com/
darknet/yolo/.

12) Véry, Thibaut. Alphafold2 Et La Prédiction de Structures de Protéines. https://www.youtube.com/watch?
v=YEHXMsowhxg. Accessed 6 Feb. 2025.

13) AlphaFold - Probable Disease Resistance Protein At1g58602 - Google Deep Mind, EMBL-EBI. https:
//alphafold.com/entry/Q8W3KO0. Accessed 3 Feb. 2025.

14) https://time.com/6247678/openai-chatgpt-kenya-workers/. Accessed 4 Feb. 2025.

15) Google Turns to Nuclear to Power Al Data Centres. https://www.bbc.com/news/articles/c748gn94k950.
Accessed 6 Feb. 2025.

16) Leféevre, Laurent, et al. IA Générative Sobre : Un Oxymore ? https://2024.jres.org/programme#modal-
119. Accessed 6 Feb. 2025.

17) Fiche de Criticité - Tantale. https://www.mineralinfo.fr/sites/default/files/documents/2020-12/
fichecriticitetantale-publique20200131.pdf. Accessed 6 Feb. 2025.

18) Du Sang Dans Nos Cellulaires. https://ici.radio-canada.ca/info/2019/05/coltan-republique-democratique-
congo-mines-enfants/. Accessed.

19) Tom’s Hardware. https://www.tomshardware.com/pc-components/gpus/datacenter-gpu-service-
life-can-be-surprisingly-short-only-one-to-three-years-is-expected-according-to-unnamed-google-
architect. Accessed 6 Feb. 2025.

20) NVIDIA. https://www.nvidia.com/en-us/sustainability/product-recycling/. Accessed 6 Feb. 2025.

21) NVIDIA Corporate Sustainability Report. https://images.nvidia.com/aem-dam/Solutions/documents/
FY2024-NVIDIA-Corporate-Sustainability-Report.pdf. Accessed 6 Feb. 2025.

22) OpenAl Pleads That It Can’t Make Money Without Using Copyrighted Materials for Free. https://futurism.
com/the-byte/openai-copyrighted-material-parliament. Accessed 6 Feb. 2025.

23) Touvron, Hugo, et al. LLaMA : Open and Efficient Foundation Language Models. 2023, https://arxiv.org/
abs/2302.13971.

24) Luccioni, Sasha, et al. “Power Hungry Processing : Watts Driving the Cost of Al Deployment?” The
2024 ACM Conference on Fairness, Accountability, and Transparency, ACM, 2024, https://doi.org/10.
1145/3630106.3658542.

25) Consommation d’eau de ChatGPT. https://apnews.com/article/chatgpt-gpt4-iowa-ai-water-consumption-
microsoft-f551fde98083d17a7e8d904f8be822c4. Accessed 6 Feb. 2025.

26) Baydin, Atilim Gunes, et al. Automatic Differentiation in Machine Learning : A Survey. 2018, https://arxiv.
org/abs/1502.05767.

27) PyTorch. https://pytorch.org/. Accessed 3 Feb. 2025.

28) DeepSeek-Al, et al. DeepSeek-V3 Technical Report. 2024, https://arxiv.org/abs/2412.19437.

29) Devlin, Jacob, et al. BERT : Pre-Training of Deep Bidirectional Transformers for Language Understan-
ding. 2019, https://arxiv.org/abs/1810.04805.

30) GPT Tokenizer. https://gpt-tokenizer.dev/. Accessed 3 Feb. 2025.

31) Llama-3.2-1B. https://huggingface.co/meta-llama/Llama-3.2-1B. Accessed 4 Feb. 2025.

32) How to Generate Text : Using Different Decoding Methods for Language Generation with Transformers.
https://huggingface.co/blog/how-to-generate. Accessed 7 Mar. 2025.

33) Wikipédia. https://wikipedia.fr/. Accessed 26 Feb. 2025.

34) GitHub. https://github.com/. Accessed 26 Feb. 2025.

35) ArXiv. https://arxiv.org/. Accessed 26 Feb. 2025.

36) FineWeb. https://huggingface.co/datasets/HuggingFaceFW/fineweb. Accessed 25 Feb. 2025.

37) Tie, Guiyao, et al. A Survey on Post-Training of Large Language Models. 2025, https://arxiv.org/abs/
2503.06072.

38) Kopf, Andreas, et al. OpenAssistant Conversations — Democratizing Large Language Model Alignment.
2023, https://arxiv.org/abs/2304.07327.

39) Tiktokenizer. https://tiktokenizer.vercel.app/. Accessed 26 Feb. 2025.

40) Ouyang, Long, et al. Training Language Models to Follow Instructions with Human Feedback. 2022,
https://arxiv.org/abs/2203.02155.

41) Mikolov, Tomas, et al. Efficient Estimation of Word Representations in Vector Space. 2013, https://arxiv.
org/abs/1301.3781.

42) Pennington, Jeffrey, et al. “GloVe : Global Vectors for Word Representation.” Empirical Methods in Na-

26

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://www.youtube.com/watch?v=YEHXMsowhxg
https://www.youtube.com/watch?v=YEHXMsowhxg
https://alphafold.com/entry/Q8W3K0
https://alphafold.com/entry/Q8W3K0
https://time.com/6247678/openai-chatgpt-kenya-workers/
https://www.bbc.com/news/articles/c748gn94k95o
https://2024.jres.org/programme#modal-119
https://2024.jres.org/programme#modal-119
https://www.mineralinfo.fr/sites/default/files/documents/2020-12/fichecriticitetantale-publique20200131.pdf
https://www.mineralinfo.fr/sites/default/files/documents/2020-12/fichecriticitetantale-publique20200131.pdf
https://ici.radio-canada.ca/info/2019/05/coltan-republique-democratique-congo-mines-enfants/
https://ici.radio-canada.ca/info/2019/05/coltan-republique-democratique-congo-mines-enfants/
https://www.tomshardware.com/pc-components/gpus/datacenter-gpu-service-life-can-be-surprisingly-short-only-one-to-three-years-is-expected-according-to-unnamed-google-architect
https://www.tomshardware.com/pc-components/gpus/datacenter-gpu-service-life-can-be-surprisingly-short-only-one-to-three-years-is-expected-according-to-unnamed-google-architect
https://www.tomshardware.com/pc-components/gpus/datacenter-gpu-service-life-can-be-surprisingly-short-only-one-to-three-years-is-expected-according-to-unnamed-google-architect
https://www.nvidia.com/en-us/sustainability/product-recycling/
https://images.nvidia.com/aem-dam/Solutions/documents/FY2024-NVIDIA-Corporate-Sustainability-Report.pdf
https://images.nvidia.com/aem-dam/Solutions/documents/FY2024-NVIDIA-Corporate-Sustainability-Report.pdf
https://futurism.com/the-byte/openai-copyrighted-material-parliament
https://futurism.com/the-byte/openai-copyrighted-material-parliament
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/3630106.3658542
https://doi.org/10.1145/3630106.3658542
https://apnews.com/article/chatgpt-gpt4-iowa-ai-water-consumption-microsoft-f551fde98083d17a7e8d904f8be822c4
https://apnews.com/article/chatgpt-gpt4-iowa-ai-water-consumption-microsoft-f551fde98083d17a7e8d904f8be822c4
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://pytorch.org/
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/1810.04805
https://gpt-tokenizer.dev/
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/blog/how-to-generate
https://wikipedia.fr/
https://github.com/
https://arxiv.org/
https://huggingface.co/datasets/HuggingFaceFW/fineweb
https://arxiv.org/abs/2503.06072
https://arxiv.org/abs/2503.06072
https://arxiv.org/abs/2304.07327
https://tiktokenizer.vercel.app/
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

tural Language Processing (EMNLP), 2014, pp. 1532—43, http://www.aclweb.org/anthology/D14-1162.

43) Vaswani, Ashish, et al. Attention Is All You Need. 2023, https://arxiv.org/abs/1706.03762.

44) Su, Jianlin, et al. RoFormer : Enhanced Transformer with Rotary Position Embedding. 2023, https://arxiv.
org/abs/2104.09864.

45) Jamil, Umar. LLaMA Explained : KV-Cache, Rotary Positional Embedding, RMS Norm, Grouped Query
Attention, SwiGLU. https://www.youtube.com/watch?v=Mn_9W1nCFLo. Accessed 27 Mar. 2025.

46) Llama Nuts and Bolts - RoPE. https://adalkiran.github.io/llama-nuts-and-bolts/10-ROPE-ROTARY-
POSITIONAL-EMBEDDINGS/. Accessed 7 Mar. 2025.

47) Train 400x Faster Static Embedding Models with Sentence Transformers. https://huggingface.co/blog/
static-embeddings. Accessed 7 Mar. 2025.

48) Model2Vec : Distill a Small Fast Model from Any Sentence Transformer. https://huggingface.co/blog/
Pringled/model2vec. Accessed 7 Mar. 2025.

49) Groeneveld, Dirk, et al. OLMo : Accelerating the Science of Language Models. 2024, https://arxiv.org/
abs/2402.00838.

50) DeepSeek-Al. “DeepSeek-R1 : Incentivizing Reasoning Capability in LLMs via Reinforcement Learning.”
arXiv Preprint arXiv :2501.12948, 2024, https://arxiv.org/abs/2501.12948.

51) Grattafiori, Aaron, et al. The Llama 3 Herd of Models. 2024, https://arxiv.org/abs/2407.21783.

52) Opening up ChatGPTOpening up ChatGPT : Tracking Openness of Instruction-Tuned LLMs. https://
opening-up-chatgpt.github.io/. Accessed 18 Mar. 2025.

53) Open Source Al Index. https://osai-index.eu/the-index. Accessed 21 Mar. 2025.

54) OpenAl. GPT-4 Technical Report. 2023, https://arxiv.org/abs/2303.08774.

55) Anthropic. Claude. 2024, https://www.anthropic.com/news/claude-3-family.

56) Touvron, Hugo, et al. LLaMA : Open and Efficient Foundation Language Models. 2023, https://arxiv.org/
abs/2302.13971.

57) Team, Gemini, et al. Gemini : A Family of Highly Capable Multimodal Models. 2024, https://arxiv.org/
abs/2312.11805.

58) Chen, Stanley F., et al. “An Empirical Study of Smoothing Techniques for Language Modeling.” Computer
Speech & Language, vol. 13, no. 4, 1999, pp. 359-94, https://aclanthology.org/A98-1014.pdf.

59) Shannon, Claude E. “A Mathematical Theory of Communication.” Bell System Technical Journal, vol.
27, no. 3, 1948, pp. 379-423, https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/
entropy.pdf.

60) Brown, Peter F., et al. “Class-Based n-Gram Models of Natural Language.” Proceedings of the 30th
Annual Meeting of the Association for Computational Linguistics, 1992, pp. 467-73, https://aclanthology.
org/P92-1058.pdf.

61) Elman, Jeffrey L. “Finding Structure in Time.” Cognitive Science, vol. 14, no. 2, 1990, pp. 179-211,
https://doi.org/10.1016/0364-0213(90)90002-E.

62) Hochreiter, Sepp, et al. “Long Short-Term Memory.” Neural Computation, vol. 9, no. 8, 1997, pp. 1735-80,
https://www.bioinf.jku.at/publications/older/2604.pdf.

63) Cho, KyungHyun, et al. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical
Machine Translation. 2014, https://arxiv.org/abs/1406.1078.

64) Bengio, Yoshua, et al. “A Neural Probabilistic Language Model.” Journal of Machine Learning Research,
vol. 3, 2003, pp. 1137-55, https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.

65) Brants, Thorsten, et al. “Large Language Models in Machine Translation.” Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, 2007, pp. 858—67, https://aclanthology.org/D07-1090.pdf.

66) Mikolov, Tomas, et al. “Recurrent Neural Network Based Language Model.” Proceedings of the 11th An-
nual Conference of the International Speech Communication Association (INTERSPEECH 2010), 2010,
pp. 104548, https://www.isca-speech.org/archive/interspeech_2010/mikolov10_interspeech.html.

67) Bahdanau, Dzmitry, et al. Neural Machine Translation by Jointly Learning to Align and Translate. 2014,
https://arxiv.org/abs/1409.0473.

68) Mécanisme d’attention. https://ai.stackexchange.com/questions/21389/what-is-the-intuition-behind-
the-attention-mechanism. Accessed 3 Feb. 2025.

69) Radford, Alec, et al. Improving Language Understanding by Generative Pre-Training. OpenAl, 2018,
https://cdn.openai.com/research-covers/language-unsupervised/language understanding_paper.pdf.

27

http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://www.youtube.com/watch?v=Mn_9W1nCFLo
https://adalkiran.github.io/llama-nuts-and-bolts/10-ROPE-ROTARY-POSITIONAL-EMBEDDINGS/
https://adalkiran.github.io/llama-nuts-and-bolts/10-ROPE-ROTARY-POSITIONAL-EMBEDDINGS/
https://huggingface.co/blog/static-embeddings
https://huggingface.co/blog/static-embeddings
https://huggingface.co/blog/Pringled/model2vec
https://huggingface.co/blog/Pringled/model2vec
https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
https://opening-up-chatgpt.github.io/
https://opening-up-chatgpt.github.io/
https://osai-index.eu/the-index
https://arxiv.org/abs/2303.08774
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://aclanthology.org/A98-1014.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://aclanthology.org/P92-1058.pdf
https://aclanthology.org/P92-1058.pdf
https://doi.org/10.1016/0364-0213(90)90002-E
https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/abs/1406.1078
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://aclanthology.org/D07-1090.pdf
https://www.isca-speech.org/archive/interspeech_2010/mikolov10_interspeech.html
https://arxiv.org/abs/1409.0473
https://ai.stackexchange.com/questions/21389/what-is-the-intuition-behind-the-attention-mechanism
https://ai.stackexchange.com/questions/21389/what-is-the-intuition-behind-the-attention-mechanism
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

70) Radford, Alec, et al. Language Models Are Unsupervised Multitask Learners. OpenAl, 2019, https://cdn.
openai.com/better-language-models/language_models_are_unsupervised_multitask learners.pdf.

71) Yang, Zhilin, et al. XLNet : Generalized Autoregressive Pretraining for Language Understanding. 2019,
https://arxiv.org/abs/1906.08237.

72) Liu, Yinhan, et al. RoBERTa : A Robustly Optimized BERT Pretraining Approach. 2019, https://arxiv.org/
abs/1907.11692.

73) Brown, Tom, et al. “Language Models Are Few-Shot Learners.” Advances in Neural Information Proces-
sing Systems, vol. 33, 2020, pp. 1877-901, https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

74) Raffel, Colin, et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Trans-
former.” Journal of Machine Learning Research, vol. 21, no. 1, 2020, pp. 5485-551, htitps:
/lijmlr.org/papers/volume21/20-074/20-074.pdf.

75) Shoeybi, Mohammad, et al. Megatron-LM : Training Multi-Billion Parameter Language Models Using
Model Parallelism. 2019, https://arxiv.org/abs/1909.08053.

76) Stability Al. StableLM-3B-4E1T. 2024, https://stability.wandb.io/stability-llm/stable-Im/reports/StableLM-
3B-4E1T--VmlldzoyMju4.

77) Alayrac, Jean-Baptiste, et al. Flamingo : A Visual Language Model for Few-Shot Learning. 2022, https:
/larxiv.org/abs/2204.14198.

78) Driess, Danny, et al. PaLM-e : An Embodied Multimodal Language Model. 2023, https://arxiv.org/abs/
2303.03378.

79) Liu, Haotian, et al. Visual Instruction Tuning. 2023, https://arxiv.org/abs/2304.08485.

80) Chen, Mark, et al. Evaluating Large Language Models Trained on Code. 2021, https://arxiv.org/abs/
2107.03374.

81) Roziére, Baptiste, et al. Code Llama : Open Foundation Models for Code. Meta Al, 2023, https://ai.meta.
com/blog/code-llama-large-language-model-coding/.

82) Singhal, Karan, et al. Towards Expert-Level Medical Question Answering with Large Language Models.
2023, https://arxiv.org/abs/2305.09617.

83) Lee, Jinhyuk, et al. “BioBERT : A Pre-Trained Biomedical Language Representation Model for Biomedi-
cal Text Mining.” Bioinformatics, vol. 36, no. 4, 2020, pp. 1234—40, https://doi.org/10.1093/bioinformatics/
btz682.

84) Chalkidis, llias, et al. “LEGAL-BERT : The Muppets Straight Out of Law School.” Findings of the Asso-
ciation for Computational Linguistics : EMNLP 2020, Association for Computational Linguistics, 2020, pp.
2898-904, https://doi.org/10.18653/v1/2020.findings-emnlp.261.

85) Ollama - Run Llama 2, Mistral, and Other Models Locally. https://ollama.ai/. Accessed 28 Mar. 2025.

86) LM Studio - Discover, Download, and Run Local LLMs. https://Imstudio.ai/. Accessed 28 Mar. 2025.

87) Gerganov, Georgi. Llama.cpp - Port of Facebook’s LLaMA Model in c/c++. https://github.com/ggerganov/
llama.cpp. Accessed 28 Mar. 2025.

88) Replicate - Run Open-Source Models with an API. https://replicate.com/. Accessed 28 Mar. 2025.

28

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://arxiv.org/abs/1909.08053
https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4
https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://arxiv.org/abs/2305.09617
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://ollama.ai/
https://lmstudio.ai/
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://replicate.com/

	Introduction à la notion de modèle d’IA avec un exemple
	Qu’est-ce qu’un modèle ?
	Apprentissage Automatique (Machine Learning), entraînement
	Les impacts humains et environnementaux des modèles
	Facultatif - Zoom sur les réseaux de neurones

	Explication du fonctionnement des LLM
	Modèle de fondation, tokens et machines à camemberts
	Entraînement des modèles de fondation
	Du modèle de fondation à l’agent conversationnel
	Ajustement supervisé
	Ajustement par renforcement

	Comment représenter des tokens avec des nombres ? Les embeddings
	Vecteurs
	Embedding

	Écosystème et historique des LLM
	Différencier les LLM
	Historique des LLM
	1990-2010 : Approches statistiques et neuronales
	2011-2016 : Word Embeddings et avancées RNN
	2017-2019 : Apparition des Transformers
	2020-2021 : Montée en puissance et adoption
	2022 : Démocratisation et open-source
	2023-2024 : Multimodalité et spécialisation

	Accès et déploiement des LLM

	Bibliographie

